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A. Appendix

This appendix provides the descriptions of datasets
(Sec. A.1.1), implementation details (Sec. A.1.2), video-
to-text retrieval performance on the LSMDC, MSVD, and
ActivityNet Captions datasets (Sec. A.2.1), additional exper-
iments for the out-domain retrieval (Sec. A.2.2), the reason
for applying diffusion models (Sec. A.2.3), discussion of
the limitations (Sec. A.2.4), the additional visualization of
the diffusion process (Sec. A.3.1), the visualization of the
text-frame attention map (Sec. A.3.2), and the visualization
of the text-to-video retrieval examples (Sec. A.3.3).

A.1. Datasets and Implementation Details

A.1.1 Datasets

We compare the proposed DiffusionRet with other methods
on five benchmark text-video retrieval datasets, including
MSRVTT [37], LSMDC [33], MSVD [5], ActivityNet Cap-
tions [18], and DiDeMo [2].

MSRVTT. MSRVTT [37] contains 10,000 YouTube
videos, each with 20 text descriptions. We follow the training
protocol in [26, 10, 28] and evaluate on text-to-video and
video-to-text search tasks on the 1K-A testing split with 1K
video or text candidates defined by [39].

LSMDC. LSMDC [33] contains 118,081 video clips
from 202 movies. The duration of videos in the LSMDC
dataset is short. We follow the split of [10] with 1,000 videos
for testing.

MSVD. MSVD [5] contains 1,970 videos. Each video
has approximately 40 associated text description. Videos in
the MSVD dataset are short in duration, lasting about 10 to
25 seconds. We follow the official split of 1,200 and 670 as
the train and test set, respectively.

1Equal contribution.
2Corresponding author: Li Yuan, Jie Chen.

ActivityNet Captions. ActivityNet Captions [18] con-
sists densely annotated temporal segments of 20K YouTube
videos. Following [10, 29, 36], we concatenate descriptions
of segments in a video to construct “video-paragraph” for
retrieval. We report results on the “val1” split of 10,009 and
4,917 as the train and test set.

DiDeMo. DiDeMo [2] contains 10,464 videos anno-
tated 40,543 text descriptions. We concatenate descriptions
of segments in a video to construct “video-paragraph” for
retrieval. We follow the training and evaluation protocol
in [27].

A.1.2 Implementation Details.

Following previous works [27, 13, 14, 15], we utilize the
CLIP (ViT-B/32) [31] as the pre-trained model. The dimen-
sion of the feature is 512. The temporal transformer [35, 23]
is composed of 4-layer blocks, each including 8 heads and
512 hidden channels. The temporal position embedding [38]
and parameters are initialized from the text encoder of the
CLIP. We use the Adam optimizer [16] and set the batch size
to 128. The initial learning rate is 1e-7 for the text encoder
and video encoder and 1e-3 for other modules. We set the
temperature τ̂ to 0.01 and τ

′
to 1. For short video datasets,

i.e., MSRVTT, LSMDC, and MSVD, the word length is 32
and the frame length is 12. For long video datasets, i.e.,
ActivityNet Captions and DiDeMo, the word length is 64
and the frame length is 64.

The training is divided into two stages. In the first stage,
we train the feature extractor from the discrimination per-
spective. In the second stage, we optimize the generator
from the generation perspective. For the MSRVTT and
LSMDC datasets, the experiments are carried out on 2
NVIDIA Tesla V100 GPUs. For the MSVD, ActivityNet
Captions, and DiDeMo datasets, the experiments are car-
ried out on 8 NVIDIA Tesla V100 GPUs. In both of the



Method LSMDC MSVD

R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓ MnR↓

TT-CE [8] ICCV21 17.5 36.0 45.0 98.5 14.3 - 27.1 55.3 67.1 149.5 4.0 -
CLIP4Clip [27] Neurocomputing22 20.8 39.0 48.6 108.4 12.0 54.2 62.0 87.3 92.6 241.9 1.0 4.3
EMCL-Net [13] NeurIPS22 22.2 40.6 49.2 112.0 12.0 - 54.3 81.3 88.1 223.7 1.0 5.6

DiffusionRet (Ours) 23.0 43.5 51.5 118.0 9.0 40.2 61.9 88.3 92.9 243.1 1.0 4.5
+ QB-Norm [4] 22.8 43.2 51.6 117.6 9.0 40.0 60.3 86.4 92.0 238.7 1.0 4.5

Method ActivityNet Captions DiDeMo

R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓ MnR↓

TT-CE [8] ICCV21 23.0 56.1 - - 4.0 - 21.1 47.3 61.1 129.5 6.3 -
CLIP4Clip [27] Neurocomputing22 41.4 73.7 85.3 200.4 2.0 6.7 41.4 68.2 79.1 188.7 2.0 12.4
EMCL-Net [13] NeurIPS22 42.7 74.0 - - 2.0 - 45.7 74.3 82.7 202.7 2.0 10.9
HBI [14] CVPR23 42.4 73.0 86.0 201.4 2.0 6.5 46.2 73.0 82.7 201.9 2.0 8.7

DiffusionRet (Ours) 43.8 75.3 86.7 205.8 2.0 6.3 46.2 74.3 82.2 202.7 2.0 10.7
+ QB-Norm [4] 47.4 76.3 86.7 210.4 2.0 6.7 50.3 75.1 82.9 208.3 1.0 10.3

Table A: Video-to-text retrieval performance on the LSMDC, MSVD, and ActivityNet Captions datasets. “↑” denotes
that higher is better. “↓” denotes that lower is better.

Method MSRVTT MSRVTT->ActivityNet Captions

R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓ R@1↑ R@5↑ R@10↑ Rsum↑ MdR↓

CLIP4Clip [27]‡ Neurocomputing22 43.8 70.6 81.4 195.8 2.0 29.1 58.3 72.1 159.5 4.0
EMCL-Net [13]‡ NeurIPS22 47.0 72.3 82.6 201.9 2.0 28.7 56.8 70.6 156.1 4.0

DiffusionRet (Ours) 49.0 75.2 82.7 206.9 2.0 31.5 60.0 73.8 165.3 3.0

Table B: Text-to-video retrieval performance in out-domain retrieval settings. “MSRVTT->ActivityNet Captions” denotes
that the generalization results on unseen ActivityNet Captions test setting using pre-trained models on the MSRVTT dataset.“‡”
denotes our own re-implementation of baselines. “↑” denotes that higher is better. “↓” denotes that lower is better.

tasks of text-to-video and video-to-text retrieval, we assume
that only the candidate sets are known in advance. In the
inference phase, we consider both the distance of video
and text representations in the representation space and the
joint probability of video and text. Code is available at
https://github.com/jpthu17/DiffusionRet.

A.2. Additional Results and Discussions

A.2.1 Video-to-Text Retrieval

We compare the proposed DiffusionRet with other meth- ods
on five benchmark. In addition to the text-to-video retrieval
results in the main paper, we provide video-to-text retrieval
results on the LSMDC, MSVD, ActivityNet Captions, and
DiDeMo datasets in Tab. A. Extensive experiments on five
datasets, including MSRVTT, LSMDC, MSVD, ActivityNet
Captions, and DiDeMo, demonstrate that our method is capa-
ble of dealing with both short and long videos. DiffusionRet
achieves consistent improvements across different datasets,
which demonstrates the effectiveness of our method.

A.2.2 Out-domain Retrieval

Most text-video retrieval methods [27, 13, 14, 15] are eval-
uated using the same dataset, which may not reflect their
ability to generalize to unseen data. To this end, we per-
form out-domain retrieval by pre-training a model on one
dataset (referred to as the “source”) and evaluating its per-
formance on another dataset (referred to as the “target”)
that is not included in the training. In addition to the out-
domain retrieval experiments in the main paper, we provide
additional experiments in the out-domain retrieval setting
(MSRVTT->ActivityNet Captions) in Tab. B. We find that
discriminant approaches do not transfer well from in-domain
to out-of-domain retrieval. For instance, EMCL-Net outper-
forms CLIP4Clip in in-domain retrieval, but its performance
is slightly lower than CLIP4Clip in out-domain retrieval. In
contrast, DiffusionRet achieves good performance in both
in-domain and out-of-domain retrieval.

A.2.3 Why Diffusion Models

Diffusion models have demonstrated remarkable generative
power in various fields. Besides the powerful generative



Query:  A young girl petting a dog that is laying on a couch.                                                                        
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Query:  A cook prepares food items in a metal bowl.                                 
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Query:  Two men stand on a platform suspended high above the city.                                                                    
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Query:  A woman with blonde hair and a black shirt is talking.                                 
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Figure A: The visualization of the diffusion process of the probability distribution. We highlight the ground truth in
green, and show the process from randomly initialized noise input (x50) to the final predicted distribution (x0). The iterative
refinement property and many-to-many nature of the diffusion model render it an effective approach for text-video retrieval.

power of diffusion models, we explain other advantages of
applying the diffusion model rather than other generative
approaches to cross-modal retrieval, mainly in two aspects.
First, the coarse-to-fine nature of the diffusion model en-
ables it to progressively uncover the correlation between
text and video, rendering it a more effective approach for
retrieval tasks than other generation training methods, such
as generative adversarial network [11] and variational au-
toencoder [17]. Second, the many-to-many nature of the
diffusion model makes it more suitable for generating joint
probabilities than the auto-regressive networks [9, 32]. We
recommend further investigation of the potential of the gen-
erative method for discriminant tasks in future research. In
our future work, we will explore our algorithm in segmenta-

tion [22, 24] and visual question answering [21, 19, 20].

A.2.4 Limitations of our Work

Generative models have focused on generative tasks, e.g., im-
age generation [12, 34], natural language generation [3, 25],
and audio generation [30]. Some other works have attempted
to adapt the generative models for discriminant tasks, e.g.,
image segmentation [1], visual grounding [7], and detec-
tion [6]. However, these precursor methods require addi-
tional discriminative training. To train on limited data, we
optimize the proposed generation model from both genera-
tion and discrimination perspectives. Although such a hybrid
training method can improve model performance with lim-



Text:  A man is playing guitar and singing.                                                                               
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Text: A man rides his motorcycle to a building.                                                                              
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Figure B: The visualization of the text-frame attention map. These results demonstrate that our method can capture the
correlation between text and frames.

Query: The women sit at the lap top and talk to one another. 
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Query: A boy is playing with a dump truck.
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Figure C: The visualization of the text-to-video results. We highlight the ground truth in green. These results demonstrate
that our method can mine the correlation between text and video effectively.

ited data, we believe that pure generative training is a more
promising solution when the data is sufficient. We suggest
exploring a pure generative training approach to the retrieval
problem in the future.

A.3. Additional Visualizations

A.3.1 Diffusion Process

The coarse-to-fine nature of the diffusion model enables it to
progressively uncover the correlation between text and video,
rendering it an effective approach for cross-modal retrieval.
To better understand the diffusion process, we show the
additional visualization of the diffusion process in Fig. A.
These results demonstrate that our method can progressively

uncover the correlation between text and video.

A.3.2 Text-Frame Attention Map

To extract the joint encoding of text and video, we propose
the text-frame attention encoder, which takes text representa-
tion as query and frame representation as key and value. To
better understand the process of joint encoding of text and
video, we show the visualization of the text-frame attention
map in Fig. B. As shown in Fig. B, the text-frame attention
encoder adaptively extracts the frames that are similar to
the text so that fine-grained video features can be extracted.
These results demonstrate that our method can capture the
correlation between text and frames.



A.3.3 Text-to-Video Retrieval

We show two retrieval examples from the MSRVTT testing
set for text-to-video retrieval in Fig. C. As shown in Fig. C,
our method successfully retrieves the ground-truth video.
These results demonstrate that our method can mine the
correlation between text and video effectively.
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