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A. Datasets

Middlebury is limited to indoor scenes with 15 training
image pairs and 15 testing image pairs captured in high res-
olution, and the maximum disparity can exceed 600 pixels.
In this paper, we use full resolution to evaluate Middlebury.

ETH3D contains 27 training and 20 testing low reso-
lution image pairs, captured by monochrome stereo cam-
eras with smaller baselines, which have a disparity range of
0 — 64.

KITTI 2012/2015 contain images with a large aspect ra-
tio (> 3), focusing on real-world urban driving scenarios.
KITTI 2012 contains 194 training and 195 testing image
pairs, while KITTI 2015 contains 200 training and 200 test-
ing image pairs. The disparity range is between 0 — 230.

B. Implementation Details

The sampling point area K is set as 3x3 and 1x9, which
is the same as CREStereo [2]. The channel number after
feature extraction is 256 for CREStereo++_RVC and 64 for
Lite-CREStereo++, respectively. The iteration number of
CREStereo++_RVC for evaluation is set as 20.

The method CREStereo++_RVC is trained with 8
NVIDIA V100 GPUs, with a total batch size of 32. The
method Lite-CREStereo++ is trained with 2 NVIDIA V100
GPUs, with a total batch size of 32. All modules are initial-
ized from scratch with random weights. Asymmetric chro-
matic augmentations including shifts in brightness, contrast
and gamma are employed for data augmentation. Slight ran-
dom homography transformation and asymmetric occlusion
[10] are also applied to the right image.

C. Memory Consumption

While memory consumption is also an important factor
of stereo matching, we compare the training and inference
memory in Table. a. All experiments are evaluated on V100
GPUs with a batch size of 32 for training. And for infer-
ence, the input size is 384x1248 (KITTI size) with a sin-

gle V100 GPU. As can be seen from the table, our Lite-
CREStereo++ has the lowest memory consumption and is
also efficient enough to be trained on 1080/2080 GPUs.

Table a: The comparison of training memory, inference memory,
and training speed with existing methods.

Method ‘Train (GB) Infer (GB) Train Speed (s/iter)
AANet[9] 7.42 2.20 2.38
Fast-ACVNet[8] 7.35 3.19 1.44
Lite-CREStereo++ 5.98 1.89 1.72
CREStereo++_RVC 26.6 3.51 4.13

D. Compared with CREStereo

Tab.b depicts the comparison results of CREStereo[2]
on target datasets to illustrate the effectiveness of the pro-
posed method. The experiments are trained on full datasets
with the same protocol and settings, and evaluated follow-
ing CREStereo. Specifically, the proportion of Middlebury
and ETH3D in the training set is 2%, and the batchsize is
16. For Middlebury, the inference size is set as 1536 x 2048;
for ETH3D, 768 x 1024. Reshape and 2-stage inference are
adopted for both datasets. As can be seen from the table, the
proposed method outperforms CREStereo on both datasets,
which illustrates the effectiveness of the UGAC module.

Table b: Comparison results between CREStereo and the proposed
method on Middlebury and ETH3D.

Middlebury (Full) ETH3D
Methods Bad 2.0 AvgErr | Bad 1.0 AvgErr
CREStereo 4.53 0.93 1.01 0.16
CREStereo++ 3.07 0.85 0.88 0.14




E. Table 3.

All of the results on Middlebury are computed for all
pixels and full resolution, including Table 3 in the origi-
nal paper. The results of comparison methods in Table 3
are obtained from the public codes and papers using the of-
ficial weights without retraining, except RAFT-Stereo [3]
and CREStereo since they didn’t report the results on all of
the four datasets. Thus, we re-trained RAFT-Stereo on our
hardware platform, following the optimal settings in their
official repositories and original papers. Tab.c depicts the
comparison results of RAFT-Stereo reported from the orig-
inal paper and re-trained in Table 3. The re-trained model
of RAFT-Stereo performs better on KITTI-15, but worse on
ETH3D and Middlebury than the original one.

Table c: Comparison of the results of RAFT-Stereo conducted by
re-training or from the original paper.

Methods ETH3D | KITTI-15 | Middlebury (Full)
RAFT-Stereo (origin) 33 5.7 18.3
RAFT-Stereo (re-train) 7.8 5.5 21.6
CREStereo++ (ours) 4.4 5.2 14.8
F. Ablation Study

We also conduct an ablation study on the uncertainty
module. We replace the uncertainty module with a di-
rect convolution architecture and keep the other settings
the same. As can be seen from Tab.d, using uncertainty
guided operation outperforms the method using direct con-
volutions.

Table d: Ablation study on uncertainty module on Middlebury and
ETH3D.

Middlebury (Full) ETH3D
Method Bad 2.0 AvgErr Bad 1.0 AvgErr
Direct CNN 3.72 0.88 0.91 0.15
Uncertainty 3.07 0.85 0.88 0.14

G. Robustness Evaluation

Table e and Table f illustrate detailed results on aspect of
bad 0.5, bad 1.0, bad 2.0, bad 4.0, average error (AvgErr),
Root Mean Square Error (RMSE), A50, A90, A95, and
A99 on Middlebury and ETH3D datasets, respectively. All
methods are evaluated on three real-world public bench-
marks with the same set of model parameters. Specifically,
as can be seen from the tables, our method achieves the best
overall performance, with all (ten) items of data ranking 1st
on Middlebury and eight items ranking 1st on ETH3D.

H. Visualization Results

Fig. 1 and Fig. 2 present more visualization results of
our method and existing SoOTA methods on Middlebury
dataset. Fig. 3 and Fig. 4 show the results on ETH3D and
KITTI2015, respectively. All methods are tested on these
three datasets with a single trained fixed model. Our method
still achieves the best visualization results on all three
datasets, also surpassing the robust methods, RaftStereo[7],
AANet[9], and CFNet[6], such as the leafs in first row of
Fig. 1, the table-tennis table in the second line of Fig. 3 and
the sky in the second line of Fig. 4.
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Table e: Robustness comparison among Middlebury testset with existing SOTA methods in RVC. All methods are tested with a single
trained fixed model. The overall rank is obtained by Schulze Proportional Ranking [5] to combine multiple rankings into one. Our
approach achieves the best overall performance.

Method Middlebury
bad 0.5 bad 1.0 bad 2.0 bad 4.0 AvgErr RMSE A50 A90 A95 A99
AANet_RVC [9] 60.9 429 31.8 25.8 12.8 32.8 1.16 414 81.5 142.0
CVANet_RVC 772 58.5 38.5 23.1 8.64 259 1.52 222 48.6 124.0
GANet RVC [11] 66.1 43.1 249 16.3 15.8 42.0 0.95 50.9 83.8 194.0
HSMNet_RVC [10] 55.3 31.2 16.5 9.68 3.44 13.4 0.62 4.26 17.6 63.8
MaskLacGwcNet_RVC [1] 57.6 313 15.8 10.3 13.5 46.6 0.68 51.0 109.0 197.0
GEStereo RVC 42.5 22.8 14.1 9.51 3.78 15.5 0.47 4.75 18.8 83.7
CroCo_RVC 553 329 19.7 12.2 5.14 16.4 0.73 14.5 29.3 72.4
NLCANet_V2_RVC [4] 52.8 29.4 16.4 10.3 5.60 21.9 0.58 8.85 35.0 113.0
CFNet_RVC [6] 48.7 26.2 16.1 11.3 5.07 18.2 0.53 8.37 34.7 88.1
iRaftStereo RVC [3] 47.8 24.0 133 8.02 2.90 122 0.50 321 133 59.2
raft+ RVC [7] 443 22.6 14.4 10.5 3.86 15.2 0.48 6.14 18.1 80.8
CREStereo++_RVC (ours) 36.5 16.5 9.46 6.25 2.20 10.4 0.33 1.95 6.84 52.7

Table f: Robustness comparison among ETH3D testset with existing SOTA methods in RVC. All methods are tested with a single trained
fixed model. The overall rank is obtained by Schulze Proportional Ranking [5] to combine multiple rankings into one. Our approach
achieves the best overall performance.

Method ETH3D
bad 0.5 bad 1.0 bad 2.0 bad 4.0 AvgErr RMSE A50 A90 A95 A99
AANet_RVC [9] 13.75 541 1.95 0.94 0.33 0.79 0.16 0.59 1.22 3.70
CVANet RVC 13.70 4.58 1.32 0.60 0.32 0.83 0.18 0.59 1.08 3.20
GANet RVC [11] 26.12 6.97 1.25 0.63 0.45 0.81 0.31 0.82 1.11 345
HSMNet_RVC [10] 11.37 4.40 1.51 0.57 0.28 0.70 0.14 0.55 091 3.02
MaskLacGwcNet_ RVC [1] 17.56 6.42 1.88 0.56 0.38 0.84 0.22 0.71 1.17 3.77
GEStereo RVC 13.23 3.95 1.25 0.52 0.29 0.61 0.17 0.56 0.93 2.66
CroCo_RVC 6.98 1.54 0.50 0.17 0.21 0.45 0.13 0.42 0.59 2.00
NLCANet_V2_RVC [4] 12.58 4.11 1.20 0.45 0.29 0.62 0.17 0.55 0.84 2.76
CFNet_RVC [6] 10.46 3.70 0.97 0.40 0.26 0.60 0.14 0.50 0.78 2.87
iRaftStereo _RVC [3] 5.06 1.88 0.55 0.24 0.17 0.47 0.10 0.33 0.49 1.70
raft+ RVC [7] 7.10 2.18 0.71 0.35 0.21 0.62 0.11 0.38 0.56 3.46
CREStereo++_RVC (ours) 4.83 1.70 0.37 0.15 0.16 0.38 0.08 0.32 0.49 1.98
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Figure 1: Visual and quantitative comparisons between our method and other state-of-the-art methods for robust stereo matching on
Middlebury dataset. All results from one method are directly predicted by a single model with the same set of parameters without any
fine-tuning or adaption. Our results outperform others both in accuracy and details.
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Figure 2: Visual and quantitative comparisons between our method and other state-of-the-art methods for robust stereo matching on
Middlebury dataset. All results from one method are directly predicted by a single model with the same set of parameters without any
fine-tuning or adaption. Our results outperform others both in accuracy and details.
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Figure 3: Visual and quantitative comparisons between our method and other state-of-the-art methods for robust stereo matching on ETH3D
dataset. All results from one method are directly predicted by a single model with the same set of parameters without any fine-tuning or
adaption. Our results outperform others both in accuracy and details
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Figure 4: Visual and quantitative comparisons between our method and other state-of-the-art methods for robust stereo matching on
KITTI2015 dataset. All results from one method are directly predicted by a single model with the same set of parameters without any
fine-tuning or adaption. Our results outperform others both in accuracy and details.



