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A. Additional Analysis

A.1. Examples of All Biased Objects

In Fig. 1, we introduce two observations: (1) The se-
vere FP of some classes causes the performance gap be-
tween existing WSSS methods [22, 8] and FSSS, (2) 35%
of all classes (i.e., problematic classes) activate target ob-
jects (e.g., boat, train, bird, and aeroplane) with biased ob-
jects (e.g., sea, railroad, rock, and vapour trail). Following
Fig. 1(c), we present additional examples of biased objects
for all problematic classes in Fig. A. We hope that our de-
tailed analysis of the biased problem in WSSS encourages
other researchers to develop more robust and future WSSS
approaches related to the biased problem.

A.2. Effect of Selecting Debiased Centroids

In Sec. 3.2, we present selecting target objects among
separated objects of all images after disentangling target
and biased objects using the USS-based clustering in Sec.
3.2. To evaluate the accuracy of debiased centroids, we
measure how many selected centroids are target centroids
among separated centroids of all images for each class in
Fig. 14. Following Fig. 8 in Sec. 4.3, we employ the T-
SNE [21] and the same criterion to classify target and biased
centroids using pixel-wise annotations. In our experiments,
the minimum accuracy for all classes on the PASCAL VOC
2012 train dataset is 85%. These results mean that the pro-
posed selection using background information from other
images successfully chooses target centroids in the group
of target and biased centroids.

A.3. Additional Category-wise Improvements

In line with Fig. 9, we evaluate per-class improvements
of four WSSS methods [1, 22, 12, 8] with our method.

*Correspondence to

All WSSS methods with ours show consistent improve-
ments for top-3 classes (i.e., bicycle, train, and boat) in
our FP analysis in Fig. 1(b). Also, the performance of
non-problematic classes (e.g., person, dog, and cat) are im-
proved by removing minor inconsistent objects (e.g., legs
of the horse) when complementing debiased labels in Sec.
3.4. However, a few categories (e.g., chair, dining table,
and potted plant) show inconsistent improvements due to
the poor quality of initial WSSS labels. As a result, our
method improves less when the WSSS method performs
erroneously, albeit our method improves performance for
most categories.
A.4. Qualitative Analysis with Existing Approaches

In addition to the quantitative comparison (see Tab. 5),
Fig. F illustrates a qualitative comparison of our method,
ADELE [16], and W-OoD [13] using two WSSS methods
[22, 12]. ADELE [16] enlarges biased pixels since it en-
forces consistency of all classes without considering biased
objects (the fourth column). Meanwhile, W-OoD [13] re-
moves biased objects (e.g., railroad) by utilizing extra im-
ages collected from human annotators, but it increases FN
for most classes (e.g., train and aeroplane) due to implic-
itly training biased objects with collected images (the sev-
enth column). Unlike these studies, to find biased pix-
els in WSSS labels, we first match biased objects with
background information from other images by utilizing the
USS features. Our MARS then complements biased pix-
els with the model’s predictions to prevent increasing FN
of non-biased pixels (e.g., legs of animals) in the fifth and
eighth columns. Therefore, our method achieves the fully-
automatic biased removal by explicitly eliminating biased
objects in pseudo labels.

A.5. USS Drawback for Multi-class Scenario.

Sec. 3.3 aims at identifying biased pixels by leveraging
the debiased centroids. Notably, USS fails to distinguish
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Figure A. Examples of all biased objects on the VOC dataset. Red dotted circles indicate the false activation of biased objects.
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Figure B. The shortcoming of USS in a multi-class scenario. USS
removes biased objects (e.g., railroad) but fails to separate between
similar classes (e.g., car and train). To preserve multi-class infor-
mation, we unify them and complement debiased labels.
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Figure C. Analysis of fine-tuning α on the PASCAL VOC 2012
validation set.

similar classes (e.g., car and train) within the same super-
category (e.g., vehicle) in Fig. B. Consequently, we apply
the pixel-wise maximum function to produce a binary mask
in Eq. 4.

A.6. Related to Class-aware α and Background.

Since biased objects (e.g., sea) appear in images across
all foreground classes (e.g., car and boat classes), we use a
single shared background class. In Fig. 10(a), our method
shows robustness against variations in Kbg . We also set
Kfg to 2 to separate between target and biased objects. Fig.
C shows 1) tuning α results in a marginal improvement, and
2) the optimal α is contingent upon the presence or absence
of biased objects. Nevertheless, in Fig. 10(b), we use a
single α value for automatically eliminating biased objects.

B. Additional Results
B.1. Quantitative Results

We present per-class segmentation results for two pop-
ular benchmarks in Tabs A, B, and C. Our method signif-
icantly improves performance of train (+29.1%) and boat
(+9.1%) classes, which suffer from the biased problem in
Fig. 1, versus the previous state-of-the-art method (i.e.,
RS+EPM [8]). Also, we first demonstrate performance im-
provements for most classes including biased objects on the
MS COCO 2014 dataset. When analyzing performance of
our method on the MS COCO 2014 dataset, we find some
classes (e.g., surfboard, tennis racket, and train) that contain
biased objects (e.g., sea, tennis court, and railroad), causing
performance degradation in existing WSSS methods [7, 8].
By contrast, without additional human supervision, our
method achieves significant improvements for most classes
including surfboard (+44.3%), tennis racket (+43%), and
train (+24.6%) versus the latest WSSS method [8].

B.2. Qualitative Results

The qualitative segmentation results produced by the lat-
est method [8] and our MARS are displayed in Fig. G.
Our MARS performs well in various objects or multiple
instances and can achieve satisfactory segmentation per-
formance in challenging scenes. Specifically, our method
removes biased objects for problematic classes (e.g., rail-
road in train, lake in boat, tennis court in tennis racket,
and sea in surfboard), covers more object regions for large-
scale objects (e.g., horse, car, and dining table), and cap-
tures the accurate boundaries of small-scale objects (e.g.,
bird) by complementing debiased labels with online predic-
tions and considering the model’s uncertainty. Our method
shows superior performance in the qualitative and quanti-
tative comparison with the previous state-of-the-art method
(i.e., RS+EPM [8]), demonstrating the effectiveness of our
MARS for the real-world dataset with multiple labels and
complex relationships.
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Figure D. Visualization of selecting debiased centroids for all classes on the PASCAL VOC 2012 train set. Red circles are selected
centroids by our method. The average ratio of target centroids is more than 85%, showing the effectiveness of the proposed selection.
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Figure E. Category-wise comparison with IRNet [1], SEAM [22], AdvCAM [12], RS+EPM [8], and ours in terms of the IoU (%) on
PASCAL VOC 2012 train set.
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Figure F. Examples of final segmentation results on PASCAL VOC 2012 val set for SEAM [22], ADELE [16], AdvCAM [12], W-OoD
[13], and Ours.



Table A. Class-specific performance comparisons with WSSS methods in terms of IoUs (%) on the PASCAL VOC 2012 val set.
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EM ICCV’15 [17] 67.2 29.2 17.6 28.6 22.2 29.6 47.0 44.0 44.2 14.6 35.1 24.9 41.0 34.8 41.6 32.1 24.8 37.4 24.0 38.1 31.6 33.8
MIL-LSE CVPR’15 [18] 79.6 50.2 21.6 40.9 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0
SEC ECCV’16 [9] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7
TransferNet CVPR’16 [5] 85.3 68.5 26.4 69.8 36.7 49.1 68.4 55.8 77.3 6.2 75.2 14.3 69.8 71.5 61.1 31.9 25.5 74.6 33.8 49.6 43.7 52.1
CRF-RNN CVPR’17 [19] 85.8 65.2 29.4 63.8 31.2 37.2 69.6 64.3 76.2 21.4 56.3 29.8 68.2 60.6 66.2 55.8 30.8 66.1 34.9 48.8 47.1 52.8
WebCrawl CVPR’17 [6] 87.0 69.3 32.2 70.2 31.2 58.4 73.6 68.5 76.5 26.8 63.8 29.1 73.5 69.5 66.5 70.4 46.8 72.1 27.3 57.4 50.2 58.1
CIAN AAAI’20 [4] 88.2 79.5 32.6 75.7 56.8 72.1 85.3 72.9 81.7 27.6 73.3 39.8 76.4 77.0 74.9 66.8 46.6 81.0 29.1 60.4 53.3 64.3
SSDD ICCV’19 [20] 89.0 62.5 28.9 83.7 52.9 59.5 77.6 73.7 87.0 34.0 83.7 47.6 84.1 77.0 73.9 69.6 29.8 84.0 43.2 68.0 53.4 64.9
PSA CVPR’18 [2] 87.6 76.7 33.9 74.5 58.5 61.7 75.9 72.9 78.6 18.8 70.8 14.1 68.7 69.6 69.5 71.3 41.5 66.5 16.4 70.2 48.7 59.4
FickleNet CVPR’19 [11] 89.5 76.6 32.6 74.6 51.5 71.1 83.4 74.4 83.6 24.1 73.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 64.9
RRM AAAI’20 [24] 87.9 75.9 31.7 78.3 54.6 62.2 80.5 73.7 71.2 30.5 67.4 40.9 71.8 66.2 70.3 72.6 49.0 70.7 38.4 62.7 58.4 62.6
SSSS CVPR’20 [3] 88.7 70.4 35.1 75.7 51.9 65.8 71.9 64.2 81.1 30.8 73.3 28.1 81.6 69.1 62.6 74.8 48.6 71.0 40.1 68.5 64.3 62.7
SEAM CVPR’20 [22] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5
AdvCAM CVPR’21 [12] 90.0 79.8 34.1 82.6 63.3 70.5 89.4 76.0 87.3 31.4 81.3 33.1 82.5 80.8 74.0 72.9 50.3 82.3 42.2 74.1 52.9 68.1
CPN ICCV’21 [25] 89.9 75.0 32.9 87.8 60.9 69.4 87.7 79.4 88.9 28.0 80.9 34.8 83.4 79.6 74.6 66.9 56.4 82.6 44.9 73.1 45.7 67.8
RIB NeurIPS’21 [10] 90.3 76.2 33.7 82.5 64.9 73.1 88.4 78.6 88.7 32.3 80.1 37.5 83.6 79.7 75.8 71.8 47.5 84.3 44.6 65.9 54.9 68.3
AMN CVPR’22 [14] 90.6 79.0 33.5 83.5 60.5 74.9 90.0 81.3 86.6 30.6 80.9 53.8 80.2 79.6 74.6 75.5 54.7 83.5 46.1 63.1 57.5 69.5
ADELE CVPR’22 [16] 91.1 77.6 33.0 88.9 67.1 71.7 88.8 82.5 89.0 26.6 83.8 44.6 84.4 77.8 74.8 78.5 43.8 84.8 44.6 56.1 65.3 69.3
W-OoD CVPR’22 [13] 91.2 80.1 34.0 82.5 68.5 72.9 90.3 80.8 89.3 32.3 78.9 31.1 83.6 79.2 75.4 74.4 58.0 81.9 45.2 81.3 54.8 69.8
RCA CVPR’22 [26] 91.8 88.4 39.1 85.1 69.0 75.7 86.6 82.3 89.1 28.1 81.9 37.9 85.9 79.4 82.1 78.6 47.7 84.4 34.9 75.4 58.6 70.6
SANCE CVPR’22 [15] 91.4 78.4 33.0 87.6 61.9 79.6 90.6 82.0 92.4 33.3 76.9 59.7 86.4 78.0 76.9 77.7 61.1 79.4 47.5 62.1 53.3 70.9
MCTformer CVPR’22 [23] 91.9 78.3 39.5 89.9 55.9 76.7 81.8 79.0 90.7 32.6 87.1 57.2 87.0 84.6 77.4 79.2 55.1 89.2 47.2 70.4 58.8 71.9
RS+EPM Arxiv’22 [8] 92.2 88.4 35.4 87.9 63.8 79.5 93.0 84.5 92.7 39.0 90.5 54.5 90.6 87.5 83.0 84.0 61.1 85.6 52.1 56.2 60.2 74.4
MARS (Ours) 94.1 89.3 42.0 88.8 72.9 79.5 92.7 86.2 94.2 40.3 91.4 58.8 91.1 88.9 81.9 84.6 63.6 91.7 56.7 85.3 57.3 77.7

Table B. Class-specific performance comparisons with WSSS methods in terms of IoUs (%) on the PASCAL VOC 2012 test set.
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EM ICCV’15 [17] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6
MIL-LSE CVPR’15 [18] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6
SEC ECCV’16 [9] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7
TransferNet CVPR’16 [5] 85.7 70.1 27.8 73.7 37.3 44.8 71.4 53.8 73.0 6.7 62.9 12.4 68.4 73.7 65.9 27.9 23.5 72.3 38.9 45.9 39.2 51.2
CRF-RNN CVPR’17 [19] 85.7 58.8 30.5 67.6 24.7 44.7 74.8 61.8 73.7 22.9 57.4 27.5 71.3 64.8 72.4 57.3 37.3 60.4 42.8 42.2 50.6 53.7
WebCrawl CVPR’17 [6] 87.2 63.9 32.8 72.4 26.7 64.0 72.1 70.5 77.8 23.9 63.6 32.1 77.2 75.3 76.2 71.5 45.0 68.8 35.5 46.2 49.3 58.7
PSA CVPR’18 [2] 89.1 70.6 31.6 77.2 42.2 68.9 79.1 66.5 74.9 29.6 68.7 56.1 82.1 64.8 78.6 73.5 50.8 70.7 47.7 63.9 51.1 63.7
FickleNet CVPR’19 [11] 90.3 77.0 35.2 76.0 54.2 64.3 76.6 76.1 80.2 25.7 68.6 50.2 74.6 71.8 78.3 69.5 53.8 76.5 41.8 70.0 54.2 65.0
SSDD ICCV’19 [20] 89.5 71.8 31.4 79.3 47.3 64.2 79.9 74.6 84.9 30.8 73.5 58.2 82.7 73.4 76.4 69.9 37.4 80.5 54.5 65.7 50.3 65.5
RRM AAAI’20 [24] 87.8 77.5 30.8 71.7 36.0 64.2 75.3 70.4 81.7 29.3 70.4 52.0 78.6 73.8 74.4 72.1 54.2 75.2 50.6 42.0 52.5 62.9
SSSS CVPR’20 [3] 88.7 70.4 35.1 75.7 51.9 65.8 71.9 64.2 81.1 30.8 73.3 28.1 81.6 69.1 62.6 74.8 48.6 71.0 40.1 68.5 64.3 62.7
SEAM CVPR’20 [22] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5
AdvCAM CVPR’21 [12] 90.1 81.2 33.6 80.4 52.4 66.6 87.1 80.5 87.2 28.9 80.1 38.5 84.0 83.0 79.5 71.9 47.5 80.8 59.1 65.4 49.7 68.0
CPN ICCV’21 [25] 90.4 79.8 32.9 85.7 52.8 66.3 87.2 81.3 87.6 28.2 79.7 50.1 82.9 80.4 78.8 70.6 51.1 83.4 55.4 68.5 44.6 68.5
RIB NeurIPS’21 [10] 90.4 80.5 32.8 84.9 59.4 69.3 87.2 83.5 88.3 31.1 80.4 44.0 84.4 82.3 80.9 70.7 43.5 84.9 55.9 59.0 47.3 68.6
AMN CVPR’22 [14] 90.7 82.8 32.4 84.8 59.4 70.0 86.7 83.0 86.9 30.1 79.2 56.6 83.0 81.9 78.3 72.7 52.9 81.4 59.8 53.1 56.4 69.6
W-OoD CVPR’22 [13] 91.4 85.3 32.8 79.8 59.0 68.4 88.1 82.2 88.3 27.4 76.7 38.7 84.3 81.1 80.3 72.8 57.8 82.4 59.5 79.5 52.6 69.9
RCA CVPR’22 [26] 92.1 86.6 40.0 90.1 60.4 68.2 89.8 82.3 87.0 27.2 86.4 32.0 85.3 88.1 83.2 78.0 59.2 86.7 45.0 71.3 52.5 71.0
SANCE CVPR’22 [15] 91.6 82.6 33.6 89.1 60.6 76.0 91.8 83.0 90.9 33.5 80.2 64.7 87.1 82.3 81.7 78.3 58.5 82.9 60.9 53.9 53.5 72.2
MCTformer CVPR’22 [23] 92.3 84.4 37.2 82.8 60.0 72.8 78.0 79.0 89.4 31.7 84.5 59.1 85.3 83.8 79.2 81.0 53.9 85.3 60.5 65.7 57.7 71.6
RS+EPM Arxiv’22 [8] 91.9 89.7 37.3 88.0 62.5 72.1 93.5 85.6 90.2 36.3 88.3 62.5 86.3 89.1 82.9 81.2 59.7 89.2 56.2 44.5 59.4 73.6
MARS (Ours) 93.7 93.3 40.3 90.8 70.8 71.7 94.0 86.3 93.9 40.4 87.6 67.6 90.0 87.3 83.9 83.1 64.2 89.5 59.6 79.0 55.1 77.2



Table C. Class-specific performance comparisons with WSSS methods in terms of IoUs (%) on the MS COCO 2014 val set.
Class SEC [9] DSRG [7] RS+EPM [8] MARS (Ours) Class SEC [9] DSRG [7] RS+EPM [8] MARS (Ours)

background 74.3 80.6 83.6 83.7 wine glass 22.3 24.0 39.8 45.5
person 43.6 - 74.9 56.8 cup 17.9 20.4 38.9 42.0
bicycle 24.2 30.4 55.0 59.2 fork 1.8 0.0 4.9 1.7
car 15.9 22.1 50.1 52.0 knife 1.4 5.0 9.0 6.4
motorcycle 52.1 54.2 72.9 75.2 spoon 0.6 0.5 1.1 0.9
airplane 36.6 45.2 76.5 79.6 bowl 12.5 18.8 11.3 14.1
bus 37.7 38.7 72.5 76.8 banana 43.6 46.4 67.0 67.7
train 30.1 33.2 47.4 72.0 apple 23.6 24.3 49.2 47.9
truck 24.1 25.9 46.5 54.1 sandwich 22.8 24.5 33.7 34.9
boat 17.3 20.6 44.1 52.1 orange 44.3 41.2 62.3 62.5
traffic light 16.7 16.1 60.8 53.8 broccoli 36.8 35.7 50.4 45.9
fire hydrant 55.9 60.4 80.3 80.9 carrot 6.7 15.3 35.0 31.7
stop sign 48.4 51.0 84.1 76.8 hot dog 31.2 24.9 48.3 51.5
parking meter 25.2 26.3 77.8 74.8 pizza 50.9 56.2 68.6 68.0
bench 16.4 22.3 41.2 47.2 donut 32.8 34.2 62.3 64.9
bird 34.7 41.5 62.6 72.3 cake 12.0 6.9 48.3 53.3
cat 57.2 62.2 79.2 80.9 chair 7.8 9.7 28.9 30.3
dog 45.2 55.6 73.3 76.3 couch 5.6 17.7 44.9 49.1
horse 34.4 42.3 76.1 78.2 potted plant 6.2 14.3 16.9 20.6
sheep 40.3 47.1 80.0 83.5 bed 23.4 32.4 53.6 55.9
cow 41.4 49.3 79.3 83.2 dining table 0.0 3.8 24.6 17.4
elephant 62.9 67.1 85.6 87.7 toilet 38.5 43.6 71.1 76.5
bear 59.1 62.6 82.9 87.5 tv 19.2 25.3 49.9 54.9
zebra 59.8 63.2 87.0 87.9 laptop 20.1 21.1 56.6 64.5
giraffe 48.8 54.3 82.2 83.4 mouse 3.5 0.9 17.4 12.9
backpack 0.3 0.2 9.4 11.9 remote 17.5 20.6 54.8 55.3
umbrella 26.0 35.3 73.4 77.1 keyboard 12.5 12.3 48.8 51.8
handbag 0.5 0.7 4.6 8.4 cell phone 32.1 33.0 60.8 64.6
tie 6.5 7.0 17.2 18.4 microwave 8.2 11.2 43.6 56.9
suitcase 16.7 23.4 53.9 57.2 oven 13.7 12.4 38.0 43.5
frisbee 12.3 13.0 57.7 57.5 toaster 0.0 0.0 0.0 0.0
skis 1.6 1.5 8.2 10.8 sink 10.8 17.8 36.9 40.7
snowboard 5.3 16.3 24.7 27.7 refrigerator 4.0 15.5 51.8 63.4
sports ball 7.9 9.8 41.6 40.4 book 0.4 12.3 27.3 29.2
kite 9.1 17.4 62.6 63.8 clock 17.8 20.7 23.3 19.8
baseball bat 1.0 4.8 1.5 1.6 vase 18.4 23.9 26.0 31.0
baseball glove 0.6 1.2 0.4 0.3 scissors 16.5 17.3 47.1 47.0
skateboard 7.1 14.4 34.8 34.9 teddy bear 47.0 46.3 68.8 69.5
surfboard 7.7 13.5 17.0 61.3 hair drier 0.0 0.0 0.0 0.0
tennis racket 9.1 6.8 9.0 52.0 toothbrush 2.8 2.0 19.7 32.2
bottle 13.2 22.3 38.1 36.6 mIoU 22.4 26.0 46.4 49.4



Image Ground Truth RS+EPM MARS (Ours)
PASCAL VOC 2012

Image Ground Truth RS+EPM MARS (Ours)
MS COCO 2014

Figure G. Qualitative segmentation results of the latest method (i.e., RS+EPM [8]) and the proposed MARS on PASCAL VOC 2012 and
MS COCO 2014 validation sets.
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