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A. Further analyses
In this appendix, the following analyses are presented:

• Appendix A.1: Effect of grouping methods

• Appendix A.2: Effect of reformulation methods

• Appendix A.3: Effect of hyperparameter

• Appendix A.4: Detailed analysis of speed-quality
trade-off

• Appendix A.5: Effectiveness when increasing N

• Appendix A.6: Effectiveness for full-sized images

• Appendix A.7: Comparison with AutoInt

• Appendix A.8: Detailed analysis of application to
DONeRF

• Appendix A.9: Detailed analysis of application to Ten-
soRF

A.1. Effect of grouping methods
As discussed in Section 4.1, several methods exist for

grouping the input samples when constructing a MIMO
MLP. For example, when focusing on a method for group-
ing samples on a ray,1 two opposite methods could be con-
sidered: (1) Construction of a general MIMO MLP that can
accept any combination of samples in a ray. (2) Construc-
tion of a specific MIMO MLP that accepts only a group of
nearby samples. This study adopts the latter method, as-
suming that learning a general model is more difficult than
learning a specific one. This appendix examined their dif-
ference in performance to verify this statement. More pre-
cisely, we compared MIMO-NeRF-naive, which grouped
neighboring samples on a ray, with MIMO-NeRF-random,

1We focused on grouping methods that can be conducted per ray for
two reasons: (1) In typical NeRF training, rendering is performed for ran-
domly sampled rays. Therefore, a batch does not necessarily include near
rays. (2) In NeRF, searching for near points across different rays is not
trivial because points are sampled unevenly via hierarchical sampling.

Blender LLFF
Model Np PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MIMO-NeRF-naive 2 30.18 0.944 0.065 27.31 0.860 0.167
MIMO-NeRF-random 28.48 0.920 0.102 24.90 0.766 0.294
MIMO-NeRF-naive 4 28.62 0.927 0.091 26.29 0.824 0.218
MIMO-NeRF-random 25.40 0.871 0.167 22.73 0.634 0.424
MIMO-NeRF-naive 8 26.34 0.895 0.133 25.10 0.774 0.284
MIMO-NeRF-random 23.17 0.836 0.207 21.46 0.563 0.476

Table 5. Effect of grouping methods. MIMO-NeRF-naive, which
groups neighboring samples on a ray, outperforms MIMO-NeRF-
random, which groups samples on a ray randomly, in all the cases.

which randomly grouped samples on a ray. To focus on the
comparison of the grouping methods, we did not use an ad-
vanced training scheme such as self-supervised learning.
Results. Table 5 summarizes the results. We only present
the image quality scores, that is, PSNR, SSIM, and LPIPS,
because the difference in the grouping methods did not af-
fect the other scores, that is, # Run, I-time, T-time, and
# Params. As can be observed, MIMO-NeRF-naive outper-
forms MIMO-NeRF-random in all cases. These results in-
dicated that the construction of a specific MIMO MLP was
better in our experimental settings. We note that there is
a possibility that a general MIMO-MLP can achieve com-
parable performance when using a larger-capacity model.
However, in this case, the rendering speed decreases.
Therefore, such a model is beyond the scope of this study.

A.2. Effect of reformulation methods
In Section 5.1, for Np = 2L (L > 1), we used L refor-

mulated MIMO MLPs with

R1 = 1, . . . , RL = 2L−1. (11)

In this case, the total number of MLPs running is calculated
as

L∑
m=1

N
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)
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< N.

(12)

Therefore, we can prevent a large increase in the training
time compared with the original (i.e., SISO) MLP, in which



the number of MLPs running is N .2 We denote MIMO-
NeRF with this reformulation method as MIMO-NeRF-self-
R1. For further analysis, this appendix investigates other
reformulation methods. In particular, when Np = 2, the
use of two reformulated MIMO MLPs with R1 = 1 and
R2 = 1 is the only effective option in which the total num-
ber of MLPs running does not exceed N . Therefore, we
investigated different reformulation methods for Np > 2.
Specifically, five reformulation methods were examined.

MIMO-NeRF-self-R2: This variant uses two reformulated
MIMO MLPs with

R1 = 1, R2 = 1. (13)

In this case, the total number of MLPs running is calculated
as

2∑
m=1

N

Np
Rm = N

2

Np
< N when Np > 2. (14)

MIMO-NeRF-self-R3: This variant employs Np − 1 refor-
mulated MIMO MLPs with

R1 = 1, . . . , RNp−1 = 1. (15)

In this case, the total number of MLPs running is calculated
as

Np−1∑
m=1

N

Np
Rm = N

Np − 1

Np
< N. (16)

MIMO-NeRF-self-R4: This variant adopts two reformu-
lated MIMO MLPs with

R1 = 1, R2 = 2. (17)

In this case, the total number of MLPs running is calculated
as

2∑
m=1

N

Np
Rm = N

3

Np
< N when Np > 3. (18)

This method is the same as MIMO-NeRF-self-R1 when
Np = 4.

MIMO-NeRF-self-R5: This variant uses two reformulated
MIMO MLPs with

R1 = 1, R2 =
Np

2
. (19)

2More strictly, when a group shift is conducted, padding is performed.
In this case, the number of group shifts is added to the number of MLPs
running in Equation 12. Note that the number of group shifts is equal to
or smaller than the number of reformulated MIMO MLPs. Therefore, the
effect was small.

In this case, the total number of MLPs running is calculated
as
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2
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)
< N when Np > 2. (20)

This method is the same as MIMO-NeRF-self-R1 when
Np = 4.
MIMO-NeRF-self-R6: This variant uses three reformulated
MIMO MLPs with

R1 = 1, R2 = 1, R3 = 1. (21)

In this case, the total number of MLPs running is calculated
as

3∑
m=1

N

Np
Rm = N

3

Np
< N when Np > 3. (22)

This method is identical to MIMO-NeRF-self-R3 when
Np = 4.
Results. Table 6 summarizes the results. Our findings were
as follows:
MIMO-NeRF-self-R2 vs. MIMO-NeRF-self-R3 vs. MIMO-
NeRF-self-R6. For these variants, the same variation reduc-
tion methods (i.e., Rm = 1) are used, whereas the num-
bers of reformulated MIMO MLPs (i.e., M ) are different.
We found that too many reformulated MIMO MLPs (i.e.,
MIMO-NeRF-self-R3) did not necessarily achieve the best
performance. A possible reason for this is that an excessive
number of constraints causes statistical averaging and de-
teriorates the image quality. As M increased, the training
time increased. Therefore, the results suggest that the use of
the MIMO-NeRF with a moderate value of M is preferable.
MIMO-NeRF-self-R2 vs. MIMO-NeRF-self-R4 vs. MIMO-
NeRF-self-R5. In these variants, the number of reformu-
lated MIMO-MLPs is the same (i.e., M = 2), whereas dif-
ferent reduction methods are used. We observed different
tendencies in the results of the Blender dataset and those
for the LLFF dataset. In the Blender dataset, PSNR, SSIM,
and LPIPS improved as R2 decreased, whereas, in the LLFF
dataset, they improved as R2 increased. Although not the
same, similar tendencies exist between MIMO-NeRF-self-
R1 and MIMO-NeRF-self-R2 when Np = 4. The results in-
dicate that the variation reduction is more effective for the
LLFF dataset, which includes forward-facing views, than
for the Blender dataset, which contains 360◦ views when
M = 2. However, it is noteworthy that MIMO-NeRF-self-
R1 outperformed MIMO-NeRF-self-R6 on both datasets.
These results indicate that variation reduction is effective
for both datasets when M is sufficiently large. Delving
deeper into these differences will be an interesting topic for
future research.
MIMO-NeRF-self-R1 vs. the others. MIMO-NeRF-self-R1
achieved the best or comparable performance in terms of



Blender LLFF
Model Np R PSNR↑ SSIM↑ LPIPS↓ T-time↓ PSNR↑ SSIM↑ LPIPS↓ T-time↓

(h) (h)
NeRF 1 – 31.04 0.951 0.055 4.70 27.72 0.871 0.150 3.39
MIMO-NeRF-naive

2
– 30.18 0.944 0.065 3.09 27.31 0.860 0.167 2.12

MIMO-NeRF-distill – 30.76 0.949 0.058 9.46 27.50 0.863 0.169 6.81
MIMO-NeRF-self R1 = 1, R2 = 1 31.26 0.953 0.054 5.36 27.70 0.870 0.155 3.97
MIMO-NeRF-naive

4

– 28.62 0.927 0.091 2.02 26.29 0.824 0.218 1.57
MIMO-NeRF-distill – 30.22 0.946 0.065 8.42 27.37 0.861 0.172 6.25
MIMO-NeRF-self-R1 R1 = 1, R2 = 2 30.94 0.950 0.058 4.68 27.51 0.865 0.162 3.44
MIMO-NeRF-self-R2 R1 = 1, R2 = 1 30.95 0.950 0.060 3.65 27.35 0.861 0.169 2.70
MIMO-NeRF-self-R3 R1 = 1, R2 = 1, R3 = 1 30.89 0.949 0.060 5.05 27.27 0.860 0.171 3.78
MIMO-NeRF-naive

8

– 26.34 0.895 0.133 1.66 25.10 0.774 0.284 1.24
MIMO-NeRF-distill – 29.39 0.937 0.075 8.07 27.01 0.851 0.184 5.91
MIMO-NeRF-self-R1 R1 = 1, R2 = 2, R3 = 4 30.40 0.945 0.065 5.86 26.97 0.851 0.180 4.43
MIMO-NeRF-self-R2 R1 = 1, R2 = 1 30.02 0.940 0.076 2.61 26.52 0.833 0.207 2.13
MIMO-NeRF-self-R3 R1 = 1, . . . , R7 = 1 29.88 0.937 0.080 7.75 25.66 0.797 0.243 5.97
MIMO-NeRF-self-R4 R1 = 1, R2 = 2 29.86 0.939 0.077 3.33 26.61 0.836 0.205 2.41
MIMO-NeRF-self-R5 R1 = 1, R2 = 4 29.81 0.939 0.076 4.38 26.61 0.838 0.202 3.37
MIMO-NeRF-self-R6 R1 = 1, R2 = 1, R3 = 1 30.11 0.941 0.074 3.76 26.41 0.830 0.208 2.73

Table 6. Effect of reformulation methods. We examined the PSNR, SSIM, LPIPS, and T-time scores when changing the reformulation
methods. MIMO-NeRF-self-R1, which is used in the main experiments, achieves the best or comparable performance in terms of PSNR,
SSIM, and LPIPS. Other variants are outperformed by it in most cases; however, some of them, e.g., MIMO-NeRF-self-R2 with Np = 4
on the Blender and LLFF datasets and MIMO-NeRF-self-R2/R6 with Np = 8 on the Blender dataset, achieve a performance comparable
with that of MIMO-NeRF-distill while achieving faster training than the original NeRF.

the image quality metrics, that is, PSNR, SSIM, and LPIPS,
in all cases. We note that some other variants, such as
MIMO-NeRF-self-R2 with Np = 4 on the Blender and
LLFF datasets and MIMO-NeRF-self-R2/R6 with Np = 8
on the Blender dataset, are worse than MIMO-NeRF-self-
R1 in terms of all or some of the image quality metrics,
but are comparable with MIMO-NeRF-distill while hav-
ing a shorter training time than NeRF. The results suggest
the possibility of obtaining a reasonable quality and fast-
inference model with a shorter training time by tuning the
reformulation configurations.

A.3. Effect of hyperparameter

In the experiments presented in Sections 5.1–5.3, we set
hyperparameter λ to 1 and 0.4 for the Blender and LLFF
datasets, respectively. To analyze the effect of this hyperpa-
rameter, we examined the quantitative scores when varying
λ within {0.4, 1}.

Results. Table 7 presents the results. We present only the
image quality scores because the modification of λ does
not affect the other scores, i.e., # Run, I-time, T-time, and
# Params. As can be observed, MIMO-NeRF is sensitive
to λ, and in all cases, it achieved the best performance
when using the values utilized in the experiments presented
in Sections 5.1–5.3 (i.e., λ = 1 for the Blender dataset
and λ = 0.4 for the LLFF dataset). However, the differ-
ence is relatively small, and the scores in the worst case are
still comparable to those of MIMO-NeRF-distill (Table 6).
Therefore, we consider that this sensitivity is within an al-
lowable range if λ ∈ [0.4, 1].

Blender LLFF
Np λ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

2 0.4 31.20 0.952 0.054 27.70 0.870 0.155
1.0 31.26 0.953 0.054 27.56 0.866 0.160

4 0.4 30.93 0.950 0.058 27.51 0.865 0.162
1.0 30.94 0.950 0.058 27.40 0.863 0.165

8 0.4 30.22 0.944 0.067 26.97 0.851 0.180
1.0 30.40 0.945 0.065 26.83 0.848 0.184

Table 7. Effect of hyperparameter λ. MIMO-NeRF is sensitive
to λ; however, the difference is relatively small, and the scores in
the worst case are still comparable to those of MIMO-NeRF-distill
(Table 6).

A.4. Detailed analysis of speed-quality trade-off

In Section 5.2, we present the relationship between
FLOPs and PSNR as a method to demonstrate the trade-
off between speed and quality. For a detailed analysis, this
appendix provides other relationships, including those be-
tween FLOPs/inference time and PSNR/SSIM/LPIPS.

Comparison models. In Section 5.2, we compared MIMO-
NeRF-self with two possible alternatives: NeRF-few, which
reduced the number of samples on a ray, and NeRF-small,
which reduced the number of features in the hidden lay-
ers. In particular, we adjusted the parameters so that their
FLOPs in inference were comparable to those of MIMO-
NeRF-self. We describe the details of these models in Ap-
pendix B.1.2. As discussed in the footnote in Section 5.2, an
unignorable difference between MIMO-NeRF-self, MIMO-
NeRF-few, and MIMO-NeRF-small is the difference in the
calculation cost during training. Because MIMO-NeRF-
self uses multiple reformulated MIMO MLPs during train-
ing, the calculation cost is higher than that of NeRF-small
and NeRF-few. To confirm this effect, we examined the
performance of NeRF-few and NeRF-small when increas-
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Figure 7. Relationships between FLOPs/inference time and PSNR/SSIM/LPIPS. The legend is provided in the upper right figure. In the
“FLOPs” axis, the more to the left, the lower the calculation cost. In the “I-time” axis, the more to the left, the faster the inference. In the
“PSNR” and “SSIM” axis, the more to the upper side, the better the image quality. In the “LPIPS” axis, the more to the lower side, the
better the image quality. MIMO-NeRF-self (blue line) achieved the best trade-off between speed and quality in almost all cases.



ing the batch size such that the calculation cost became al-
most the same as that of MIMO-NeRF-self. These vari-
ants are referred to as NeRF-small+ and NeRF-few+. Fur-
thermore, to confirm whether the proposed self-supervised
learning was more effective than a simple increase in the
batch size, we examined MIMO-NeRF-naive+, where we
increased the batch size, similar to NeRF-small+ and NeRF-
few+. More precisely, when Np = 2, we used two reformu-
lated MIMO MLPs with R1 = 1 and R2 = 1 for MIMO-
NeRF-self. In this case, # Run was twice that of MIMO-
NeRF-naive.3 Therefore, we increased the batch size twice
for NeRF-few+ and NeRF-small+. Similarly, when com-
pared to MIMO-NeRF-self with Np = 4, we increased
the batch size three times, and when compared to MIMO-
NeRF-self with Np = 8, we increased the batch size seven
times.

Results. Figure 7 presents the relationship between
FLOPs/inference time and PSNR/SSIM/LPIPS. We can ob-
serve that in most cases, MIMO-NeRF-self achieves a bet-
ter trade-off between speed and quality in terms of every
relationship than not only MIMO-NeRF-naive, NeRF-few,
and NeRF-small, which are presented in Sections 5.1 and
5.2, but also MIMO-NeRF-naive+, NeRF-few+, and NeRF-
small+, which are trained under better conditions. These
results strengthen our statement in the main text, that is,
MIMO-NeRF-self achieves a better trade-off between speed
and quality than the possible alternatives.

A.5. Effectiveness when increasing N

In the main experiments, we investigated the perfor-
mance of MIMO-NeRF when the number of samples (i.e.,
N ) is fixed. An interesting question is how MIMO-NeRF
works well when increasing N within the range in which its
FLOPs are comparable to those of the original NeRF. We
conducted an additional experiment to answer this question.

Results. Table 8 presents the results. The models were eval-
uated using the Blender dataset. It can be seen that MIMO-
NeRF-self outperforms NeRF in terms of all metrics, and
all scores improve as N and Np increase. The results indi-
cate that tuning not only N but also Np is important for ob-
taining the best performance under the same computational
budget.

A.6. Effectiveness for full-sized images

In Sections 5.1–5.3, half-sized images are used to bet-
ter investigate the various configurations. This appendix
examines the effectiveness of MIMO-NeRF for full-sized
images to verify whether the same conclusion holds inde-
pendently of the image size. In particular, we investigate

3More strictly, # Run increases more when a group shift is conducted
because padding is performed. In this case, the number of group shifts,
which is equal to or smaller than the number of reformulated MIMO MLPs,
is added to # Run. However, this was relatively small compared to the
number of samples. Therefore, we ignore its effect here.

Model N Np PSNR↑ SSIM↑ LPIPS↓ FLOPs
(M)

NeRF 256 1 31.04 0.951 0.055 303.82
MIMO-NeRF-self (Np = 2) 360 2 31.59 0.955 0.050 300.63
MIMO-NeRF-self (Np = 4) 648 4 31.65 0.956 0.049 298.99

Table 8. Effectiveness when increasing N . We compared NeRF
and MIMO-NeRF-self when the FLOPs are almost the same. We
evaluated the models on the Blender dataset. All the scores be-
come better as N and Np increase.

the benchmark performance for full-sized images using a
protocol similar to that described in Section 5.1.
Quantitative results. Table 9 summarizes the results for
all the metrics (i.e., PSNR, SSIM, LPIPS, # Run, I-time,
T-time, and # Params). Table 10 lists PSNR, SSIM, and
LPIPS for each scene. Similar to the analysis conducted in
Section 5.1, we analyze the results from three perspectives:
Image quality. Similar to the results for half-sized im-
ages, MIMO-NeRF-self outperformed MIMO-NeRF-self-
naive but also MIMO-NeRF-self-distill in most cases in
terms of PSNR, SSIM, and LPIPS. Even MIMO-NeRF-self
suffers from a trade-off between speed and quality as Np

increases; however, MIMO-NeRF-self is comparable to the
original NeRF when Np = 2.
Inference speed. Similar to the results for half-sized images,
all MIMO-NeRFs improved the inference time by 1.83–
5.77 times as Np increased.
Training speed. Similar to the results for half-sized images,
MIMO-NeRF-naive achieved the fastest training because
it used only a single MIMO formulation during training.
MIMO-NeRF-self increases the training time owing to the
introduction of multiple reformulated MIMO MLPs; how-
ever, each calculation cost is lower than that of a SISO MLP
in the original NeRF. Therefore, it does not suffer from
a large increase in training time compared with MIMO-
NeRF-distill, which requires the training of two networks,
that is, SISO-NeRF and MIMO-NeRF.
Summary. From these results, we found that when Np = 2,
MIMO-NeRF-self improves the inference speed of NeRF
while retaining the image quality, and when Np is larger,
MIMO-NeRF-self suffers from a trade-off between speed
and quality; however, it achieves better image quality with
a shorter training time than MIMO-NeRF-distill. These ten-
dencies are the same as those for the half-sized images.
Qualitative results. Figures 8 and 9 present the quali-
tative results for the Blender and LLFF datasets, respec-
tively. The synthesized videos are provided in the direc-
tory of videos/NeRF in the Supplementary Material.
In this directory, NeRF.mp4 was generated by the orig-
inal NeRF, MIMO-NeRF-Np-naive.mp4 was synthe-
sized by MIMO-NeRF-naive, where the number of grouped
samples was Np, and MIMO-NeRF-Np-self.mp4 was
synthesized by MIMO-NeRF-self, where the number of
grouped samples was Np.



Blender LLFF
Model Np PSNR↑ SSIM↑ LPIPS↓ # Run↓ I-time↓ T-time↓ # Params PSNR↑ SSIM↑ LPIPS↓ # Run↓ I-time↓ T-time↓ # Params

(s) (h) (M) (s) (h) (M)
NeRF [6] 1 30.94 0.946 0.070 256 38.22 12.54 1.19 26.45 0.811 0.249 256 45.46 16.22 1.19
MIMO-NeRF-naive

2
29.36 0.932 0.091 128 20.67 8.61 1.26 26.00 0.796 0.269 128 24.82 8.67 1.26

MIMO-NeRF-distill 30.55 0.943 0.077 128 20.67 25.27 1.26 26.21 0.799 0.278 128 24.82 30.79 1.26
MIMO-NeRF-self 31.01 0.947 0.071 128 20.67 14.13 1.26 26.46 0.812 0.253 128 24.82 17.51 1.26
MIMO-NeRF-naive

4
27.72 0.914 0.114 64 11.17 5.95 1.39 25.09 0.758 0.320 64 13.47 4.87 1.39

MIMO-NeRF-distill 30.01 0.939 0.083 64 11.17 22.58 1.39 26.14 0.798 0.279 64 13.47 26.97 1.39
MIMO-NeRF-self 30.66 0.944 0.075 64 11.17 12.37 1.39 26.35 0.809 0.258 64 13.47 14.52 1.39
MIMO-NeRF-naive

8
25.78 0.889 0.145 32 6.62 5.08 1.65 24.15 0.716 0.376 32 8.01 3.25 1.65

MIMO-NeRF-distill 28.85 0.929 0.095 32 6.62 21.74 1.65 25.91 0.793 0.285 32 8.01 25.34 1.65
MIMO-NeRF-self 29.92 0.938 0.084 32 6.62 14.95 1.65 25.99 0.800 0.270 32 8.01 19.16 1.65

NeRF [6] 1 31.01 0.947 0.081 – – – – 26.50 0.811 0.250 – – – –

Table 9. Benchmark performance of MIMO-NeRFs for full-sized images. The scores for the model with citation [6] are taken from another
report [6]. We provide them as references. The other scores were calculated in our environment. We implemented all the models based on
the commonly-used source code of NeRF. See Appendix B.1 for the implementation details. The PSNR, SSIM, and LPIPS for each scene
are provided in Table 10.

PSNR↑
Blender LLFF

Model Np Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg. Fern Flower Fortress Horns Laves Orchids Room T-Rex Avg.
NeRF 1 32.82 25.04 30.10 36.28 32.60 29.63 32.77 28.32 30.94 24.99 27.57 31.16 27.33 20.96 20.35 32.57 26.64 26.45
MIMO-NeRF-naive

2
31.82 24.42 25.59 35.72 30.86 27.13 31.50 27.88 29.36 24.76 27.50 30.75 26.68 20.88 20.27 31.62 25.49 26.00

MIMO-NeRF-distill 32.35 25.10 29.78 35.37 31.74 29.43 32.74 27.86 30.55 24.97 27.39 30.59 26.87 20.89 20.52 32.17 26.29 26.21
MIMO-NeRF-self 32.92 25.17 29.49 36.10 32.60 30.06 33.18 28.53 31.01 25.05 27.42 31.24 27.24 21.00 20.49 32.52 26.72 26.46
MIMO-NeRF-naive

4
29.21 23.06 25.39 34.20 28.33 26.18 28.93 26.48 27.72 24.31 27.01 29.98 25.41 20.11 19.81 29.96 24.11 25.09

MIMO-NeRF-distill 32.07 24.75 27.85 35.20 31.20 29.26 32.20 27.53 30.01 24.87 27.40 30.60 26.79 20.86 20.44 32.06 26.07 26.14
MIMO-NeRF-self 32.84 24.82 28.44 36.18 32.29 29.87 32.66 28.19 30.66 24.95 27.52 31.24 27.25 20.98 20.47 32.37 26.03 26.35
MIMO-NeRF-naive

8
27.17 21.33 23.38 32.01 25.32 25.16 27.25 24.60 25.78 23.06 26.06 28.76 24.51 19.85 18.79 29.11 23.10 24.15

MIMO-NeRF-distill 31.40 23.61 25.38 34.78 29.48 28.90 30.58 26.70 28.85 24.54 27.32 30.56 26.54 20.80 20.23 31.71 25.55 25.91
MIMO-NeRF-self 32.37 24.18 26.91 35.64 31.17 29.96 31.59 27.58 29.92 24.58 27.57 31.13 26.66 20.82 20.23 31.84 25.12 25.99
NeRF [6] 1 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.01 25.17 27.40 31.16 27.45 20.92 20.36 32.70 26.80 26.50

SSIM↑
Blender LLFF

Model Np Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg. Fern Flower Fortress Horns Laves Orchids Room T-Rex Avg.
NeRF [6] 1 0.966 0.924 0.962 0.975 0.962 0.949 0.980 0.852 0.946 0.790 0.832 0.881 0.826 0.690 0.644 0.951 0.878 0.811
MIMO-NeRF-naive

2
0.957 0.914 0.918 0.973 0.949 0.921 0.973 0.847 0.932 0.781 0.825 0.863 0.799 0.684 0.625 0.944 0.847 0.796

MIMO-NeRF-distill 0.962 0.926 0.960 0.969 0.954 0.949 0.980 0.844 0.943 0.783 0.818 0.855 0.802 0.680 0.640 0.947 0.869 0.799
MIMO-NeRF-self 0.967 0.925 0.958 0.975 0.962 0.954 0.982 0.853 0.947 0.791 0.827 0.882 0.822 0.695 0.646 0.950 0.881 0.812
MIMO-NeRF-naive

4
0.927 0.891 0.919 0.964 0.920 0.913 0.956 0.822 0.914 0.758 0.801 0.824 0.742 0.630 0.589 0.923 0.801 0.758

MIMO-NeRF-distill 0.959 0.920 0.947 0.968 0.950 0.947 0.977 0.840 0.939 0.780 0.819 0.857 0.803 0.678 0.636 0.946 0.866 0.798
MIMO-NeRF-self 0.967 0.921 0.949 0.975 0.960 0.953 0.979 0.850 0.944 0.787 0.830 0.882 0.823 0.693 0.644 0.948 0.869 0.809
MIMO-NeRF-naive

8
0.900 0.858 0.891 0.951 0.876 0.898 0.946 0.794 0.889 0.701 0.760 0.771 0.700 0.610 0.528 0.907 0.754 0.716

MIMO-NeRF-distill 0.953 0.905 0.923 0.966 0.940 0.944 0.972 0.830 0.929 0.772 0.818 0.856 0.797 0.677 0.625 0.943 0.853 0.793
MIMO-NeRF-self 0.963 0.911 0.934 0.973 0.952 0.953 0.975 0.842 0.938 0.773 0.828 0.879 0.809 0.686 0.629 0.944 0.848 0.800

NeRF [6] 1 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947 0.792 0.827 0.881 0.828 0.690 0.641 0.948 0.880 0.811

LPIPS↓
Blender LLFF

Model Np Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg. Fern Flower Fortress Horns Laves Orchids Room T-Rex Avg.
NeRF [6] 1 0.046 0.091 0.045 0.045 0.048 0.063 0.026 0.198 0.070 0.281 0.214 0.173 0.273 0.312 0.314 0.173 0.254 0.249
MIMO-NeRF-naive

2
0.057 0.107 0.108 0.047 0.067 0.103 0.035 0.205 0.091 0.294 0.222 0.201 0.303 0.319 0.338 0.188 0.284 0.269

MIMO-NeRF-distill 0.052 0.091 0.049 0.057 0.060 0.062 0.024 0.220 0.077 0.311 0.247 0.225 0.318 0.327 0.333 0.189 0.274 0.278
MIMO-NeRF-self 0.045 0.091 0.055 0.046 0.050 0.057 0.023 0.203 0.071 0.283 0.225 0.175 0.284 0.311 0.319 0.176 0.252 0.253
MIMO-NeRF-naive

4
0.088 0.141 0.104 0.062 0.110 0.107 0.063 0.239 0.114 0.321 0.255 0.272 0.377 0.374 0.386 0.236 0.336 0.320

MIMO-NeRF-distill 0.054 0.100 0.069 0.058 0.066 0.064 0.027 0.223 0.083 0.311 0.245 0.222 0.317 0.329 0.339 0.192 0.276 0.279
MIMO-NeRF-self 0.045 0.098 0.069 0.046 0.052 0.059 0.026 0.205 0.075 0.288 0.221 0.176 0.284 0.314 0.325 0.182 0.272 0.258
MIMO-NeRF-naive

8
0.112 0.181 0.134 0.096 0.163 0.123 0.079 0.273 0.145 0.386 0.323 0.348 0.427 0.402 0.445 0.281 0.396 0.376

MIMO-NeRF-distill 0.060 0.123 0.095 0.061 0.080 0.069 0.037 0.236 0.095 0.318 0.245 0.222 0.322 0.334 0.352 0.201 0.289 0.285
MIMO-NeRF-self 0.048 0.114 0.089 0.050 0.066 0.061 0.033 0.215 0.084 0.303 0.227 0.179 0.301 0.323 0.345 0.190 0.292 0.270

NeRF [6] 1 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081 0.280 0.219 0.171 0.268 0.316 0.321 0.178 0.249 0.250

Table 10. Comparison of PSNR, SSIM, and LPIPS for each scene on the Blender and LLFF datasets with full-sized images. The scores
for the model with citation [6] are taken from another report [6]. We provide them as references. The other scores were calculated in our
environment. We implemented all the models based on the commonly-used source code of NeRF. See Appendix B.1 for the implementation
details. The scores for the other metrics are provided in Table 9.
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Figure 8. Qualitative comparison between NeRF, MIMO-NeRF-naive, and MIMO-NeRF-self on the Blender dataset. This figure is an
extension of Figure 5. We report PSNR for the displayed view. The average scores for all views are presented in Table 10. As shown in (c),
(e), and (g), the deterioration of image quality becomes obvious in MIMO-NeRF-naive as Np increases. In contrast, MIMO-NeRF-self is
resistant to this deterioration, as shown in (d), (f), and (h).
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Figure 9. Qualitative comparison between NeRF, MIMO-NeRF-self, and MIMO-NeRF-self on the LLFF dataset. This figure is an extension
of Figure 5. We report PSNR for the displayed view. The average scores for all views are listed in Table 10. As shown in (c), (e), and
(g), the deterioration of image quality becomes obvious in MIMO-NeRF-naive as Np increases. In contrast, MIMO-NeRF-self is robust
against this deterioration, as shown in (d), (f), and (h).



A.7. Comparison with AutoInt
To further clarify the utility of MIMO-NeRF, we com-

pared it with AutoInt [4], which reduces the number of
MLPs running (# Run) using an integral network that calcu-
lates the colors and volume densities per segment. In partic-
ular, we investigated the difference in performance between
MIMO-NeRF-self and AutoInt when # Run was the same.
Results. Table 11 summarizes these results. The model was
evaluated using the Blender dataset (full-size images). It
can be observed that MIMO-NeRF-self outperformed Au-
toInt in most cases. Another important difference is that
AutoInt requires the use of a specific and complex grad net-
work during training, whereas MIMO-NeRF can be trained
using a standard network such as that implemented using
PyTorch.

Model # Run↓ PSNR↑ SSIM↑ LPIPS↓
AutoInt (N = 32) [4] 32 26.83 0.926 0.151
MIMO-NeRF-self (Np = 8) 32 29.92 0.938 0.084
AutoInt (N = 16) [4] 16 26.04 0.916 0.167
MIMO-NeRF-self (Np = 16) 16 28.69 0.925 0.099
AutoInt (N = 8) [4] 8 25.55 0.911 0.170
MIMO-NeRF-self (Np = 32) 8 27.19 0.908 0.118

Table 11. Comparison of AutoInt and MIMO-NeRF-self. We com-
pared AutoInt and MIMO-NeRF-self when # Run was the same.
We evaluated the models on the Blender dataset (full-sized im-
ages). The scores for AutoInt are taken from the AutoInt paper [4].
In most cases, MIMO-NeRF-self outperforms AutoInt.



A.8. Detailed analysis of application to DONeRF
In Section 5.4, we compared MIMO-DONeRF-16/4-

naive and MIMO-DONeRF-16/4-self with DONeRF-16, in
which the number of selected samples (Ns) is the same as
that of MIMO-DONeRF-16/4-naive and MIMO-DONeRF-
16/4-self (i.e., Ns = 16), and DONeRF-4, in which the
number of MLPs running (# Run) is the same as that of
MIMO-DONeRF-16/4-naive and MIMO-DONeRF-16/4-
self (i.e., # Run = 5). For further analysis, this appendix
provides a comparison with DONeRF-11, in which the
training time (T-time) is almost the same as that of MIMO-
DONeRF-16/4-self, and DONeRF-5, in which the inference
time (I-time) is close to (more strictly, slightly longer than)
that of MIMO-DONeRF-16/4-naive and MIMO-DONeRF-
16/4-self. We evaluated the models using the same metrics
as those described in Section 5.4.
Quantitative results. Table 12 summarizes the results for
all metrics. Table 13 lists the PSNR and FLIP for each
scene. Our findings are as follows:
MIMO-DONeRF-16/4-naive vs. DONeRF-5 (close I-time).
We found that MIMO-DONeRF-16/4-naive outperformed
or was comparable to DONeRF-5 in terms of PSNR and
FLIP for all scenes. MIMO-DONeRF-16/4-naive also
slightly outperformed DONeRF-5 in terms of the I-time and
T-time. Therefore, MIMO-DONeRF-16/4-naive does not
have any disadvantages compared to MIMO-DONeRF-5.
MIMO-DONeRF-16/4-self vs. DONeRF-11 (close T-time).
MIMO-DONeRF-16/4-self and DONeRF-11 were compa-
rable in terms of average PSNR and FLIP, and whether
they were better or worse depended on the view and met-
rics. Although T-time was almost the same between these
two models, MIMO-DONeRF-16/4 outperforms DONeRF-
11 significantly in terms of I-time (approximately half
of it). Overall, MIMO-DONeRF-16/4-self is better than
DONeRF-11 in terms of significantly better I-time.
Summary. Even when considering the models in which I-
time is close to that of MIMO-DONeRFs and T-time is
close to that of MIMO-DONeRF-self, the results indicate
that MIMO-DONeRFs have advantages. As discussed in
Section 5.4, the results suggest that an increase in Np (i.e.,
the replacement of the SISO MLP by the MIMO MLP) can
be used as a better alternative to a reduction in Ns when
seeking a better trade-off between speed and quality.
Qualitative results. Figure 10 shows the qualitative results.
The synthesized videos are provided in the directory of
videos/DONeRF in the Supplementary Material. In this
directory, the DONeRF-16.mp4 was synthesized using
DONeRF-16, and MIMO-DONeRF-16-4-self.mp4
was synthesized using MIMO-DONeRF-16/4-self.



Model Ns Np PSNR↑ FLIP↓ # Run↓ I-time↓ T-time↓ # Params
(s) (h) (M)

DONeRF-4 4 1 31.21 0.070 5 0.140 3.23 0.94
DONeRF-5 5 1 31.65 0.067 6 0.164 3.29 0.94
DONeRF-11 11 1 32.76 0.063 12 0.304 3.57 0.94
DONeRF-16 16 1 33.06 0.061 17 0.429 3.79 0.94
MIMO-DONeRF-16/4-naive 16 4 32.30 0.063 5 0.155 3.26 0.99
MIMO-DONeRF-16/4-self 16 4 32.72 0.061 5 0.155 3.56 0.99

DONeRF-4 [8] 4 1 31.14 0.071 – – – –
DONeRF-16 [8] 16 1 33.03 0.062 – – – –

Table 12. Comparison of quantitative scores between DONeRFs and MIMO-DONeRFs. The scores for the model with citation [8] are
taken from another report [8]. We provide them as references. The other scores were calculated in our environment. We implemented all
the models based on the official DONeRF source code. See Appendix B.2 for the implementation details. This table is an extended version
of Table 3. In addition to the scores provided in Table 3, this table provides the scores for DONeRF-5, in which I-time is close to those of
MIMO-DONeRF-16/4-naive and MIMO-DONeRF-16/4-self, and DONeRF-11, in which T-time is close to that of MIMO-DONeRF-16/4-
self. The PSNR and FLIP for each scene are presented in Table 13.

PSNR↑
Model Ns Np Barbershop Bulldozer Classroom Forest Pavillon San Miguel Avg.

DONeRF-4 4 1 30.76 33.29 34.03 30.90 31.02 27.24 31.21
DONeRF-5 5 1 31.14 34.33 34.52 31.12 31.22 27.58 31.65
DONeRF-11 11 1 31.90 36.37 35.90 31.80 31.60 28.98 32.76
DONeRF-16 16 1 32.13 36.87 36.15 31.79 31.71 29.71 33.06
MIMO-DONeRF-16/4-naive 16 4 31.60 35.14 35.19 31.61 32.50 27.77 32.30
MIMO-DONeRF-16/4-self 16 4 32.11 35.57 35.65 31.76 32.80 28.41 32.72

DONeRF-4 [8] 4 1 30.84 33.46 33.43 30.63 31.07 27.41 31.14
DONeRF-16 [8] 16 1 32.15 36.98 36.27 31.32 31.79 29.67 33.03

FLIP↓
Model Ns Np Barbershop Bulldozer Classroom Forest Pavillon San Miguel Avg.

DONeRF-4 4 1 0.064 0.044 0.053 0.075 0.099 0.083 0.070
DONeRF-5 5 1 0.064 0.040 0.051 0.074 0.097 0.078 0.067
DONeRF-11 11 1 0.059 0.033 0.047 0.071 0.096 0.070 0.063
DONeRF-16 16 1 0.058 0.032 0.047 0.072 0.095 0.065 0.061
MIMO-DONeRF-16/4-naive 16 4 0.059 0.036 0.049 0.071 0.087 0.078 0.063
MIMO-DONeRF-16/4-self 16 4 0.056 0.035 0.045 0.072 0.086 0.072 0.061

DONeRF-4 [8] 4 1 0.065 0.048 0.058 0.077 0.098 0.080 0.071
DONeRF-16 [8] 16 1 0.059 0.036 0.045 0.074 0.094 0.065 0.062

Table 13. Comparison of PSNR and FLIP for each scene between DONeRFs and MIMO-DONeRFs. The scores for the model with
citation [8] are taken from another report [8]. We provide them as references. The other scores were calculated in our environment. We
implemented all the models based on the official DONeRF source code. See Appendix B.2 for the implementation details. The scores for
the other metrics are listed in Table 12.
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Figure 10. Qualitative comparison between DONeRF-16, DONeRF-4, MIMO-DONeRF-16/4-naive, and MIMO-DONeRF-16/4-self. Best
viewed zoomed in. We report PSNR for the displayed view. The average scores for all views are given in Table 13. DONeRF-4 (c)
sometimes yields artifacts, e.g., for the belt in the “Bulldozer” scene or for the hair in the “Forest” scene. DONeRF-16 (b), MIMO-
DONeRF-16/4-naive (d), and MIMO-DONeRF-16/4-self (e) mitigate this defect by increasing the number of samples. It should be noted
that DONeRF-16 increases the inference time approximately three times, while MIMO-DONeRF-16/4-naive and MIMO-DONeRF-16/4–
self only increase the inference time 1.1 times. Another interesting finding is that MIMO-DONeRF-16/4-naive (d) and MIMO-DONeRF-
16/4-self (e) succeed in representing lotus leaves in the “Pavillon” scene, whereas DONeRF-16 (b) and DONeRF-4 (c) fail to do so. The
possible reason is that MIMO-NeRFs can accumulate neighbor information using grouped samples, and this provides a positive effect.



A.9. Detailed analysis of application to TensoRF
In Section 5.5, we used the variants of TensoRF that

achieved the best image quality as baselines. Specifically,
we used TensoRF-VM-192-30k (Rσ = 16, Rc = 48,
and the iteration of 30k) for the Blender dataset and used
TensoRF-VM-96 (Rσ,1 = Rσ,2 = 4, Rσ,3 = 16, Rc,1 =
Rc,2 = 12, and Rc,3 = 48) for the LLFF dataset. As models
with faster training but lower quality, a previous study [2]
also presented TensoRF-VM-48 (Rσ = Rc = 8, and the
iteration of 30k) and TensoRF-VM-192-15k (Rσ = 16,
Rc = 48, and the iteration of 15k) for the Blender dataset,
and TensoRF-VM-48 (Rσ,1 = Rσ,2 = 4, Rσ,3 = 16,
Rc,1 = Rc,2 = 4, and Rc,3 = 16) for the LLFF dataset.
This appendix examines whether MIMO-NeRF is also ef-
fective for these models. Based on the observation that
MIMO-TensoRF-VM-192-30k retains image quality when
Np ≤ 2 on the Blender dataset (Section 5.5), we exam-
ined MIMO-TensoRF-VM-48 and MIMO-TensoRF-VM-
192-15k with Np ∈ {2, 4} on the Blender dataset. Simi-
larly, based on the observation that MIMO-TensoRF-VM-
96 can achieve comparable image quality when Np ≤ 4
on the LLFF dataset (Section 5.5), we examined MIMO-
TensoRF-VM-96 with Np ∈ {2, 4, 8} on the LLFF dataset.
We evaluated the models using VGGVGG and VGGAlex, in
addition to the metrics described in Section 5.5.
Quantitative results. Table 14 lists the results for all the
metrics. Tables 15 and 16 summarize the PSNR, SSIM,
LPIPSVGG, and LPIPSAlex scores for each scene in the
Blender and LLFF datasets, respectively. We observed the
same tendencies as those described in Section 5.5. On the
Blender dataset, MIMO-TensoRFs can improve the I-time
and T-time of the original TensoRFs with similar image
quality when Np ≤ 2. On the LLFF dataset, MIMO-
TensoRFs can improve the I-time and T-time of the original
TensoRFs with similar image quality when Np ≤ 4. These
results suggest that MIMO-TensoRF can strengthen the in-
ference/training speed of TensoRF without deteriorating the
image quality by adequately selecting Np.
Qualitative results. Figures 11 and 12 present the qual-
itative results for the Blender and LLFF datasets, respec-
tively. The synthesized videos are provided in the direc-
tory of videos/TensoRF in the Supplementary Mate-
rial. In this directory, TensoRF.mp4 was synthesized us-
ing TensoRF-VM192-30k, and MIMO-TensoRF-2.mp4
was synthesized using the MIMO-TensoRF-VM192-30k-2.



Blender
Model Np PSNR↑ SSIM↑ LPIPSVGG LPIPSAlex # Run↓ I-time↓ T-time↓ # Params

(s) (m) (M)
TensoRF-VM-48 1 32.45 0.957 0.056 0.032 10.24 1.16 9.45 4.7
MIMO-TensoRF-VM-48-2 2 32.49 0.957 0.056 0.032 4.95 1.09 8.95 4.7
MIMO-TensoRF-VM-48-4 4 32.25 0.955 0.060 0.034 2.49 1.06 8.85 4.8
TensoRF-VM-192-15k 1 32.74 0.961 0.051 0.030 10.11 1.27 5.64 18.9
MIMO-TensoRF-VM-192-15k-2 2 32.79 0.961 0.051 0.030 4.78 1.19 5.36 18.9
MIMO-TensoRF-VM-192-15k-4 4 32.55 0.958 0.055 0.032 2.40 1.16 5.22 18.9
TensoRF-VM-192-30k 1 33.23 0.963 0.047 0.026 9.95 1.25 11.50 18.8
MIMO-TensoRF-VM-192-30k-2 2 33.26 0.963 0.047 0.026 4.76 1.18 10.89 18.8
MIMO-TensoRF-VM-192-30k-4 4 32.98 0.961 0.051 0.028 2.40 1.15 10.67 18.8
MIMO-TensoRF-VM-192-30k-8 8 32.37 0.956 0.058 0.033 1.27 1.14 10.57 18.9

TensoRF-VM-48 [2] 1 32.39 0.957 0.057 0.032 – – – –
TensoRF-VM-192-15k [2] 1 32.52 0.959 0.053 0.032 – – – –
TensoRF-VM-192-30k [2] 1 33.14 0.963 0.047 0.027 – – – –

LLFF
Model Np PSNR↑ SSIM↑ LPIPSVGG LPIPSAlex # Run↓ I-time↓ T-time↓ # Params

(s) (m) (M)
TensoRF-VM-48 1 26.48 0.832 0.213 0.125 120.78 6.14 19.83 23.4
MIMO-TensoRF-VM-48-2 2 26.51 0.833 0.211 0.124 58.42 5.70 18.21 23.4
MIMO-TensoRF-VM-48-4 4 26.50 0.832 0.211 0.124 28.11 5.24 17.20 23.4
MIMO-TensoRF-VM-48-8 8 26.41 0.830 0.215 0.126 13.58 5.03 16.86 23.5
TensoRF-VM-96 1 26.73 0.837 0.201 0.115 126.73 6.64 23.41 46.8
MIMO-TensoRF-VM-96-2 2 26.72 0.837 0.201 0.115 62.14 6.18 21.63 46.8
MIMO-TensoRF-VM-96-4 4 26.72 0.836 0.202 0.115 30.16 5.76 21.15 46.8
MIMO-TensoRF-VM-96-8 8 26.64 0.835 0.204 0.116 14.52 5.52 20.68 46.9

TensoRF-VM-48 [2] 1 26.51 0.832 0.217 0.135 – – – –
TensoRF-VM-96 [2] 1 26.73 0.839 0.204 0.124 – – – –

Table 14. Comparison of quantitative scores between TensoRFs and MIMO-TensoRFs. The scores for the model with citation [2] are taken
from another report [2]. We provide them as references. The other scores were calculated in our environment. We implemented all the
models based on the official TensoRF source code. See Appendix B.3 for the implementation details. This table is an extended version of
Table 4. The PSNR, SSIM, LPIPSVGG, and LPIPSAlex scores for each scene are presented in Tables 15 and 16.



Blender
PSNR↑

Model Np Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
TensoRF-VM-48 1 34.71 25.57 33.44 36.88 35.69 29.38 33.83 30.07 32.45
MIMO-TensoRF-VM-48-2 2 34.85 25.56 33.34 37.00 35.84 29.43 33.91 30.00 32.49
MIMO-TensoRF-VM-48-4 4 34.61 25.24 33.05 36.95 35.61 29.26 33.52 29.75 32.25
TensoRF-VM-192-15k 1 35.11 25.80 33.73 37.04 36.00 29.80 34.31 30.10 32.74
MIMO-TensoRF-VM-192-15k-2 2 35.32 25.65 33.87 37.22 36.06 29.77 34.35 30.07 32.79
MIMO-TensoRF-VM-192-15k-4 4 35.06 25.36 33.67 37.10 35.77 29.54 34.11 29.80 32.55
TensoRF-VM-192-30k 1 35.79 25.96 34.14 37.50 36.62 30.10 34.98 30.72 33.23
MIMO-TensoRF-VM-192-30k-2 2 35.91 25.96 34.28 37.64 36.61 30.11 34.97 30.62 33.26
MIMO-TensoRF-VM-192-30k-4 4 35.60 25.56 34.04 37.51 36.42 29.80 34.60 30.28 32.98
MIMO-TensoRF-VM-192-30k-8 8 35.04 24.85 33.24 37.04 35.92 29.13 33.87 29.87 32.37

TensoRF-VM-48 [2] 1 34.68 25.58 33.37 36.81 35.51 29.45 33.59 30.12 32.39
TensoRF-VM-192-15k [2] 1 34.95 25.63 33.46 36.85 35.78 29.78 33.69 30.04 32.52
TensoRF-VM-192-30k [2] 1 35.76 26.01 33.99 37.41 36.46 30.12 34.61 30.77 33.14

SSIM↑
Model Np Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.

TensoRF-VM-48 1 0.980 0.930 0.979 0.979 0.979 0.942 0.985 0.883 0.957
MIMO-TensoRF-VM-48-2 2 0.981 0.930 0.979 0.980 0.980 0.942 0.985 0.881 0.957
MIMO-TensoRF-VM-48-4 4 0.980 0.925 0.977 0.980 0.979 0.940 0.983 0.876 0.955
TensoRF-VM-192-15k 1 0.982 0.935 0.981 0.981 0.982 0.950 0.987 0.887 0.961
MIMO-TensoRF-VM-192-15k-2 2 0.983 0.934 0.982 0.982 0.982 0.949 0.987 0.886 0.961
MIMO-TensoRF-VM-192-15k-4 4 0.982 0.929 0.981 0.981 0.981 0.946 0.986 0.880 0.958
TensoRF-VM-192-30k 1 0.985 0.937 0.983 0.983 0.983 0.952 0.989 0.894 0.963
MIMO-TensoRF-VM-192-30k-2 2 0.985 0.937 0.983 0.983 0.984 0.952 0.988 0.893 0.963
MIMO-TensoRF-VM-192-30k-4 4 0.984 0.931 0.982 0.983 0.983 0.949 0.987 0.886 0.961
MIMO-TensoRF-VM-192-30k-8 8 0.982 0.922 0.978 0.980 0.981 0.942 0.984 0.877 0.956

TensoRF-VM-48 [2] 1 0.980 0.929 0.979 0.979 0.979 0.942 0.984 0.883 0.957
TensoRF-VM-192-15k [2] 1 0.982 0.933 0.981 0.980 0.981 0.949 0.985 0.886 0.959
TensoRF-VM-192-30k [2] 1 0.985 0.937 0.982 0.982 0.983 0.952 0.988 0.895 0.963

LPIPSVGG↓
Model Np Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.

TensoRF-VM-48 1 0.029 0.085 0.029 0.038 0.023 0.073 0.020 0.153 0.056
MIMO-TensoRF-VM-48-2 2 0.028 0.086 0.030 0.036 0.022 0.073 0.021 0.154 0.056
MIMO-TensoRF-VM-48-4 4 0.029 0.092 0.035 0.038 0.024 0.077 0.025 0.159 0.060
TensoRF-VM-192-15k 1 0.024 0.076 0.024 0.035 0.020 0.062 0.017 0.150 0.051
MIMO-TensoRF-VM-192-15k-2 2 0.023 0.077 0.024 0.034 0.020 0.063 0.017 0.150 0.051
MIMO-TensoRF-VM-192-15k-4 4 0.025 0.085 0.028 0.036 0.021 0.069 0.021 0.154 0.055
TensoRF-VM-192-30k 1 0.021 0.071 0.022 0.031 0.018 0.058 0.014 0.139 0.047
MIMO-TensoRF-VM-192-30k-2 2 0.020 0.072 0.022 0.030 0.017 0.058 0.015 0.140 0.047
MIMO-TensoRF-VM-192-30k-4 4 0.022 0.080 0.026 0.032 0.018 0.065 0.019 0.144 0.051
MIMO-TensoRF-VM-192-30k-8 8 0.026 0.089 0.032 0.041 0.021 0.076 0.025 0.153 0.058

TensoRF-VM-48 [2] 1 0.030 0.087 0.028 0.039 0.024 0.072 0.021 0.155 0.057
TensoRF-VM-192-15k [2] 1 0.026 0.078 0.025 0.038 0.021 0.063 0.020 0.153 0.053
TensoRF-VM-192-30k [2] 1 0.022 0.073 0.022 0.032 0.018 0.058 0.015 0.138 0.047

LPIPSAlex↓
Model Np Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.

TensoRF-VM-48 1 0.013 0.057 0.015 0.017 0.009 0.036 0.011 0.095 0.032
MIMO-TensoRF-VM-48-2 2 0.013 0.057 0.015 0.016 0.009 0.037 0.011 0.096 0.032
MIMO-TensoRF-VM-48-4 4 0.013 0.062 0.017 0.017 0.009 0.041 0.013 0.101 0.034
TensoRF-VM-192-15k 1 0.011 0.054 0.013 0.016 0.008 0.029 0.010 0.096 0.030
MIMO-TensoRF-VM-192-15k-2 2 0.011 0.055 0.013 0.015 0.008 0.030 0.010 0.097 0.030
MIMO-TensoRF-VM-192-15k-4 4 0.012 0.060 0.015 0.016 0.008 0.034 0.011 0.098 0.032
TensoRF-VM-192-30k 1 0.009 0.049 0.012 0.013 0.007 0.026 0.008 0.084 0.026
MIMO-TensoRF-VM-192-30k-2 2 0.009 0.050 0.012 0.012 0.007 0.026 0.008 0.086 0.026
MIMO-TensoRF-VM-192-30k-4 4 0.010 0.056 0.014 0.013 0.007 0.032 0.009 0.087 0.028
MIMO-TensoRF-VM-192-30k-8 8 0.011 0.064 0.018 0.017 0.008 0.041 0.013 0.094 0.033

TensoRF-VM-48 [2] 1 0.014 0.059 0.015 0.017 0.009 0.036 0.012 0.098 0.032
TensoRF-VM-192-15k [2] 1 0.013 0.056 0.014 0.017 0.009 0.029 0.013 0.101 0.032
TensoRF-VM-192-30k [2] 1 0.010 0.051 0.012 0.013 0.007 0.026 0.009 0.085 0.027

Table 15. Comparison of PSNR, SSIM, LPIPSVGG, and LPIPSAlex for each scene on the Blender dataset between TensoRFs and MIMO-
TensoRFs. The scores for the model with citation [2] are taken from another report [2]. We provide them as references. The other scores
were calculated in our environment. We implemented all the models based on the official TensoRF source code. See Appendix B.3 for the
implementation details. The scores for the other metrics are summarized in Table 14.



PSNR↑
Model Np Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

TensoRF-VM-48 1 25.18 27.88 31.11 27.83 21.27 19.94 31.66 26.99 26.48
MIMO-TensoRF-VM-48-2 2 25.23 27.95 31.14 27.88 21.24 19.93 31.59 27.08 26.51
MIMO-TensoRF-VM-48-4 4 25.21 27.85 31.19 27.83 21.26 19.97 31.51 27.19 26.50
MIMO-TensoRF-VM-48-8 8 25.13 27.82 31.06 27.74 21.20 19.98 31.25 27.09 26.41
TensoRF-VM-96 1 25.00 28.29 31.47 28.35 21.09 19.81 32.22 27.63 26.73
MIMO-TensoRF-VM-96-2 2 25.14 28.36 31.43 28.38 21.00 19.86 32.17 27.40 26.72
MIMO-TensoRF-VM-96-4 4 25.16 28.21 31.48 28.29 21.10 19.89 32.18 27.47 26.72
MIMO-TensoRF-VM-96-8 8 25.12 28.08 31.27 28.22 21.08 19.98 31.87 27.54 26.64

TensoRF-VM-48 [2] 1 25.31 28.22 31.14 27.64 21.34 20.02 31.80 26.61 26.51
TensoRF-VM-96 [2] 1 25.27 28.60 31.36 28.14 21.30 19.87 32.35 26.97 26.73

SSIM↑
Model Np Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

TensoRF-VM-48 1 0.806 0.854 0.889 0.865 0.745 0.651 0.946 0.898 0.832
MIMO-TensoRF-VM-48-2 2 0.808 0.855 0.891 0.868 0.744 0.651 0.946 0.899 0.833
MIMO-TensoRF-VM-48-4 4 0.809 0.852 0.891 0.865 0.745 0.650 0.945 0.901 0.832
MIMO-TensoRF-VM-48-8 8 0.807 0.850 0.891 0.866 0.739 0.649 0.939 0.899 0.830
TensoRF-VM-96 1 0.800 0.861 0.899 0.883 0.744 0.643 0.952 0.910 0.837
MIMO-TensoRF-VM-96-2 2 0.803 0.865 0.900 0.884 0.739 0.644 0.952 0.907 0.837
MIMO-TensoRF-VM-96-4 4 0.806 0.857 0.901 0.883 0.739 0.644 0.950 0.909 0.836
MIMO-TensoRF-VM-96-8 8 0.804 0.855 0.897 0.882 0.740 0.648 0.945 0.910 0.835
TensoRF-VM-48 [2] 1 0.816 0.859 0.889 0.859 0.746 0.655 0.946 0.890 0.832
TensoRF-VM-96 [2] 1 0.814 0.871 0.897 0.877 0.752 0.649 0.952 0.900 0.839

LPIPSVGG↓
Model Np Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

TensoRF-VM-48 1 0.244 0.186 0.157 0.207 0.226 0.282 0.179 0.219 0.213
MIMO-TensoRF-VM-48-2 2 0.243 0.184 0.155 0.203 0.227 0.283 0.179 0.216 0.211
MIMO-TensoRF-VM-48-4 4 0.240 0.187 0.154 0.208 0.227 0.284 0.179 0.212 0.211
MIMO-TensoRF-VM-48-8 8 0.241 0.188 0.153 0.205 0.233 0.285 0.196 0.215 0.215
TensoRF-VM-96 1 0.249 0.172 0.142 0.180 0.220 0.281 0.162 0.201 0.201
MIMO-TensoRF-VM-96-2 2 0.245 0.168 0.141 0.179 0.227 0.283 0.161 0.205 0.201
MIMO-TensoRF-VM-96-4 4 0.241 0.176 0.139 0.181 0.226 0.284 0.167 0.199 0.202
MIMO-TensoRF-VM-96-8 8 0.240 0.179 0.141 0.182 0.228 0.282 0.179 0.201 0.204

TensoRF-VM-48 [2] 1 0.237 0.187 0.159 0.221 0.230 0.283 0.181 0.236 0.217
TensoRF-VM-96 [2] 1 0.237 0.169 0.148 0.196 0.217 0.278 0.167 0.221 0.204

LPIPSAlex↓
Model Np Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

TensoRF-VM-48 1 0.156 0.113 0.078 0.125 0.155 0.195 0.088 0.091 0.125
MIMO-TensoRF-VM-48-2 2 0.155 0.112 0.075 0.120 0.156 0.198 0.089 0.088 0.124
MIMO-TensoRF-VM-48-4 4 0.152 0.114 0.075 0.126 0.156 0.197 0.089 0.086 0.124
MIMO-TensoRF-VM-48-8 8 0.153 0.113 0.075 0.119 0.160 0.197 0.102 0.086 0.126
TensoRF-VM-96 1 0.156 0.101 0.066 0.103 0.143 0.193 0.076 0.079 0.115
MIMO-TensoRF-VM-96-2 2 0.154 0.098 0.065 0.102 0.148 0.194 0.075 0.082 0.115
MIMO-TensoRF-VM-96-4 4 0.151 0.101 0.065 0.103 0.147 0.196 0.082 0.077 0.115
MIMO-TensoRF-VM-96-8 8 0.148 0.103 0.067 0.101 0.152 0.192 0.088 0.077 0.116

TensoRF-VM-48 [2] 1 0.161 0.121 0.084 0.146 0.167 0.204 0.093 0.108 0.135
TensoRF-VM-96 [2] 1 0.155 0.106 0.075 0.123 0.153 0.201 0.082 0.099 0.124

Table 16. Comparison of PSNR, SSIM, LPIPSVGG, and LPIPSAlex for each scene on the LLFF dataset between TensoRFs and MIMO-
TensoRFs. The scores for the model with citation [2] are taken from another report [2]. We provide them as references. The other scores
were calculated in our environment. We implemented all the models based on the official TensoRF source code. See Appendix B.3 for the
implementation details. The scores for the other metrics are summarized in Table 14.
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Figure 11. Qualitative comparison between TensoRF, MIMO-TensoRF-2, MIMO-TensoRF-4, and MIMO-TensoRF-8 on the Blender
dataset. Best viewed zoomed in. TensoRF-VM-192-30k was used as a baseline, and MIMO-NeRF was incorporated into it.
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Figure 12. Qualitative comparison between TensoRF, MIMO-TensoRF-2, MIMO-TensoRF-4, and MIMO-TensoRF-8 on the LLFF dataset.
Best viewed zoomed in. TensoRF-VM-96 was used as a baseline, and MIMO-NeRF was incorporated into it.



B. Implementation details
The following implementation details are provided in

this appendix:

• Appendix B.1: Implementation details of NeRF (Sec-
tions 5.1–5.3)

• Appendix B.2: Implementation details of DONeRF
(Section 5.4)

• Appendix B.3: Implementation details of TensoRF
(Section 5.5)

B.1. Implementation details of NeRF
B.1.1 Datasets

In the experiments discussed in Sections 5.1–5.3, we used
two datasets commonly employed in previous studies on
NeRFs. The detailed information is as follows:
Blender dataset [6]. The dataset included eight scenes:
Chair, Drums, Ficus, Hotdog, Lego, Materials, Mic, and
Ship. Each scene contained 360◦ views of complex objects
at a resolution of 800× 800 pixels. They were rendered us-
ing a Blender Cycles path tracer and exhibited complicated
geometries and non-Lambertian materials. For the training
and testing, 100 and 200 views were used, respectively. The
data were downloaded from the NeRF authors’ website [6].4

The license information is provided on the website.
Local Light Field Fusion (LLFF) dataset [5]. Specifi-
cally, we used the dataset with addition obtained from [6].
The dataset consists of eight complex real-world scenes:
Fern, Flower, Fortress, Horns, Leaves, Orchids, Room, and
T-Rex. Each of these included 20–62 forward-facing views
at a resolution of 1008 × 756 pixels. They were captured
using a forward-facing handheld cell phone. One-eighth of
the images were used for testing, and the rest were used
for training. The data were downloaded from the NeRF au-
thors’ website [6].4 The license information is provided on
the website.
As mentioned in Section 5.3, we primarily used half-sized
images following the default settings of an open-source
NeRF code5 to better investigate the various configurations.
We also used full-sized images for representative cases to
confirm whether the effectiveness of MIMO-NeRF was in-
dependent of the image size. We discuss these cases in Ap-
pendix A.6.

B.1.2 Model configurations

NeRF. We implemented the baseline NeRF using the open-
source code of NeRF.5 The model configuration of the base-
line NeRF followed the default settings provided in the

4https://drive.google.com/drive/folders/
128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1

5https://github.com/yenchenlin/nerf-pytorch

Blender LLFF
Model Nc Nf Np F FLOPs Nc Nf Np F FLOPs

(M) (M)
NeRF 64 128 1 256 303.82 64 64 1 256 227.87
MIMO-NeRF 64 128 2 256 160.33 64 64 2 256 120.25
NeRF-few 34 68 1 256 161.41 34 34 1 256 121.06
NeRF-small 64 128 1 184 160.72 64 64 1 184 120.54
MIMO-NeRF 64 128 4 256 88.59 64 64 4 256 66.44
NeRF-few 19 38 1 256 90.20 19 19 1 256 67.65
NeRF-small 64 128 1 135 89.09 64 64 1 135 66.82
MIMO-NeRF 64 128 8 256 52.72 64 64 8 256 39.54
NeRF-few 11 22 1 256 52.22 11 11 1 256 39.16
NeRF-small 64 128 1 103 53.62 64 64 1 103 40.22

Table 17. Comparison of the number of coarse samples (Nc), num-
ber of fine samples (Nf ), number of grouped samples (Np), num-
ber of features in a hidden layer (F ), and FLOPs between NeRF,
MIMO-NeRF, NeRF-few, and NeRF-small. The parameters of
NeRF-few and NeRF-small were adjusted such that their FLOPs
became almost the same as that of MIMO-NeRF.

code. Specifically, the input position x ∈ R3 and view di-
rection d ∈ S2 were encoded to a 63-dimensional vector
γ(x) and 27-dimensional vector γ(d), respectively, using
positional encoding [6, 10]. Subsequently, the encoded po-
sition γ(x) was applied to an 8-layer MLP with rectified
unit (ReLU) activation [7], each layer of which had 256
hidden units. The MLP included a skip connection that in-
corporated γ(x) into the fifth layer. The volume density
σ ∈ R+ was calculated from the output of the MLP using
a linear layer. At a different branch, the output of the MLP
was converted using a linear layer with 256 hidden units,
and the encoded direction γ(d) was then concatenated into
the converted result. After the concatenated vector was con-
verted to a 128 vector using a 1-layer MLP with ReLU acti-
vation, it was used to calculate the RGB color c ∈ R3 using
an additional linear layer. We used the same network archi-
tecture for coarse and fine MLPs. For the half-sized images,
the numbers of coarse and fine samples (i.e., Nc and Nf )
were set to 64 and 128 for the Blender dataset and to 64 and
64 for the LLFF dataset, respectively. For the full-sized im-
ages, Nc and Nf were set to 64 and 128, respectively, for
both datasets.
MIMO-NeRF. MIMO-NeRF has the same network archi-
tecture as the baseline NeRF, except for the inputs and out-
puts. Particularly, the above-mentioned network was modi-
fied to accept Np inputs, that is, (xi, . . . ,xj), with view di-
rection d, and produce Np outputs, that is, (ci, . . . , cj) and
(σi, . . . , σj), where Np was the number of grouped sam-
ples and j = i + Np − 1. The other parameters, such as
the dimensions of the hidden units, number of layers, type
of activation function, Nc, and Nf , were the same as those
in the baseline NeRF.
NeRF-few. In NeRF-few, which was used in the experiment
described in Section 5.2, the number of samples (Nc and
Nf ) was adjusted such that its FLOPs became almost the
same as those of MIMO-NeRF. Detailed values are listed in
Table 17.
NeRF-small. In NeRF-small, which was used in the experi-

https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
https://github.com/yenchenlin/nerf-pytorch


ment discussed in Section 5.2, the number of features in the
hidden layers (F ) was adjusted such that its FLOPs were
almost the same as those of MIMO-NeRF. Detailed values
are listed in Table 17.

B.1.3 Training settings

Half-sized images. For a fair comparison, we trained all
the models using the same training settings except that in
MIMO-NeRF, the NeRF loss function, i.e., Lpixel (Equa-
tion 3), was replaced with LMIMO = LMIMO

pixel + λL3D (Equa-
tion 10). Specifically, when we trained the models using
half-sized images, we referred to the default settings pro-
vided in the open-source code of NeRF. 5 More precisely,
the models were trained for 200k iterations using the Adam
optimizer [3] with an initial learning rate of 5 × 10−4 and
momentum terms β1 and β2 of 0.9 and 0.999, respectively.
The batch size was set to 1024 rays. For MIMO-NeRF, we
set λ = 1 for the Blender dataset and λ = 0.4 for the LLFF
dataset.

Full-size images. For full-size images, we trained the mod-
els according to the configurations provided in the official
NeRF source code [6].6 For the Blender dataset, the mod-
els were trained for 500k iterations using the Adam opti-
mizer [3] with an initial learning rate of 5 × 10−4 and mo-
mentum terms β1 and β2 of 0.9 and 0.999, respectively. The
batch size was set to 1024 rays. For the LLFF dataset, the
models were trained for 200k iterations using the Adam op-
timizer [3] with an initial learning rate of 5 × 10−4, β1 of
0.9, and β2 of 0.999. The batch size was set to 4096 rays.
For MIMO-NeRF, λ was set to 1 for the Blender dataset and
0.4 for the LLFF dataset.

B.1.4 Evaluation metrics

We used seven evaluation metrics to measure the perfor-
mance of NeRF and MIMO-NeRF quantitatively: peak
signal-to-noise ratio (PSNR), structural similarity index
(SSIM) [11], learned perceptual image patch quality
(LPIPS) [12], number of MLPs running (# Run), inference
time (I-time), training time (T-time), and number of pa-
rameters (# Params). The PSNR, SSIM, and LPIPS were
used as image quality metrics, following the original NeRF
study [6]. I-time and T-time were used to measure the in-
ference and training speeds, respectively. # Run and the
# Params were provided as supplement information. The
details of these metrics are as follows:

PSNR. PSNR is a metric that is widely used for as-
sessing the signal quality and is calculated as PSNR =
−10 log10(∥Î− I∥22), where Î and I denote the synthesized
and ground-truth images, respectively, assuming that im-
ages are in [0, 1]. It measures the ratio between the maxi-
mum possible power of a signal and the power of the noise,

6https://github.com/bmild/nerf

which affects the signal quality. The larger the PSNR, the
better the image quality.

SSIM. SSIM measures the structural similarity between
two images and is commonly used to evaluate image qual-
ity. The larger the SSIM, the better the image quality.

LPIPS. LPIPS measures the distance between two images
using the features of a pretrained DNN. The LPIPS has been
demonstrated to have a better correlation with human per-
ceptual judgment than the PSNR or SSIM [12]. We used
the VGG network [9] as the pretrained DNN, following the
NeRF study [6]. The smaller the LPIPS, the better the im-
age quality.

# Run. # Run indicates the number of MLPs running re-
quired for rendering a single pixel. NeRF and MIMO-NeRF
are calculated as Nc

Np
+

Nc+Nf

Np
, where Nc

Np
is the # Run for

the MLP in the coarse strategy, and Nc+Nf

Np
is the # Run

for the MLP in the fine strategy. In the baseline NeRF,
Np = 1. The smaller the value of # Run, the faster the
rendering speed when the speed for each run is the same.

I-time. The inference time was measured using a single
NVIDIA GeForce RTX 3080 Ti Laptop GPU. The smaller
the I-time, the faster the inference. For simplicity and a
fair comparison, we measured the inference time using a
standard PyTorch implementation.5 Optimizing the imple-
mentation for faster inference (e.g., using custom CUDA
kernels) would be interesting for future research.

T-time. The training time was measured using a single
NVIDIA A100-SXM4-80GB GPU. The smaller the T-time,
the faster the training. Similar to I-time, for simplicity and
a fair comparison, we measured the training time using a
standard PyTorch implementation.5 Optimizing the imple-
mentation for faster training (e.g., using custom CUDA ker-
nels) would be interesting for future research.

# Params. # Params indicates the number of parameters of
the MLPs, including one in the coarse strategy and the other
in the fine strategy. As mentioned in Section 5.3, # Params
increases in MIMO-NeRF mainly because the total dimen-
sion of the encoded position γ(x) increased by Np times
according to the increase in the inputs, as described in Ap-
pendix B.1.2. It should be noted that MIMO-NeRF has the
same network as the baseline NeRF except for the inputs
and outputs; therefore, the # Params does not increase Np

times. For example, in the experiments discussed in Sec-
tion 5.3, the # Params increased by 1.06, 1.17, and 1.39
times when Np was 2, 4, and 8, respectively.

B.2. Implementation details of DONeRF

B.2.1 Datasets

In the experiments discussed in Section 5.4, the models
were evaluated using the DONeRF dataset introduced by
DONeRF [8]. The detailed information is as follows:

https://github.com/bmild/nerf


DONeRF dataset [8]. The dataset included six synthetic
indoor and outdoor scenes: Barbershop, Bulldozer, Class-
room, Forest, Pavillon, and San Miguel. They exhibit fine
and high-frequency details and a wide depth range. Each
scene included 300 forward-facing views with 800 × 800
pixels each. They were rendered using the Blender Cycles
path tracer. The poses were randomly sampled within the
view cell, where the rotation was limited to 30◦ in pitch and
20◦ in yaw relative to the initial camera direction. For train-
ing, validation, and testing, 70%, 10%, and 20% of images
were used, respectively. Following the original DONeRF
study [8], the images were downsampled to 400× 400 pix-
els to accelerate the training. We downloaded the data from
the DONeRF authors’ website [8].7 The license information
is provided on the website.

B.2.2 Model configurations

DONeRF. We implemented DONeRF using the source
code provided by the authors [8].8 In particular, DONeRF
was composed of two networks: a depth oracle network and
a shading network.
Depth oracle network. The depth oracle network predicted
the depth from the position x ∈ R3 and view direction d ∈
S2. In this network, positional encoding was not adopted for
the inputs because it has been demonstrated that it does not
improve performance [8]. After x and d were concatenated,
they were converted to depth using an 8-layer MLP, where
each layer had 256 hidden units and ReLU activation [7]
except for the last output layer.
Shading network. The shading network predicted the RGB
color c ∈ R3 and the volume density σ ∈ R+ from x and d
for the samples selected by the depth oracle network. It had
the same network architecture as that of the depth oracle
network except for the following two points: (1) positional
encoding [6, 10] was applied to x and d to obtain a 63-
dimensional vector γ(x) and 27-dimensional vector γ(d),
respectively, and (2) only γ(x) was used at the first layer
and γ(d) was concatenated to the feature vector before the
last layer.
In DONeRF-Ns (e.g., DONeRF-16), the number of selected
samples in the shading network was set to Ns (e.g., 16).
MIMO-DONeRF. We incorporated the MIMO-NeRF con-
cept into the shading network because the depth oracle net-
work is already a fast single-input network. The differ-
ence between the shading network of DONeRF and that of
MIMO-DONeRF is limited to the difference in the inputs
and outputs. Specifically, the shading network of DON-
eRF was modified to accept Np inputs, that is, (xi, . . . ,xj),
with view direction d, and generate Np outputs, that is,
(ci, . . . , cj) and (σi, . . . , σj), where Np was the number

7https://repository.tugraz.at/records/
jjs3x-4f133

8https://github.com/facebookresearch/DONERF

of grouped samples and j = i + Np − 1. The other
parameters, such as the dimensions of the hidden units,
number of layers, and type of activation function, were
the same as those in DONeRF. In MIMO-DONeRF-Ns/Np

(e.g., MIMO-DONeRF-16/4), the number of samples se-
lected by the depth oracle network was set to Ns (e.g., 16),
and the number of grouped samples was set to Np (e.g., 4).

B.2.3 Training settings

For a fair comparison, we trained DONeRF and MIMO-
DONeRF using the same configurations, except that in
MIMO-DONeRF, LMIMO (Equation 10) was used as an al-
ternative to the NeRF loss function, that is, Lpixel (Equa-
tion 3). Specifically, we trained them using the default set-
tings provided in the official DONeRF source code.8 The
depth oracle and shading networks were separately trained
for 300k iterations using the Adam optimizer [3] with a
learning rate of 5×10−4 and momentum terms β1 and β2 of
0.9 and 0.999, respectively. The batch size was set to 4096
rays. The hyperparameter for MIMO-DONeRF was set to
λ = 0.001.

B.2.4 Evaluation metrics

We used six evaluation metrics to quantitatively investigate
the performance of DONeRF and MIMO-DONeRF: PSNR,
FLIP [1], # Run, I-time, T-time, and # Params. The PSNR
and FLIP were used as image quality metrics, following the
original DONeRF study [8]. I-time and T-time were used to
assess inference and training speeds, respectively. # Run
and # Params were provided as supplement information.
The definitions of PSNR, I-time, T-time, and # Params are
the same as those in Appendix B.1.4. Detailed information
on the other two metrics (FLIP and # Run) is as follows:

FLIP. FLIP is a metric that evaluates the differences be-
tween rendered images and the corresponding ground-truth
images. The effectiveness of the FLIP was demonstrated
through a user study [1]. The smaller the FLIP, the better
the image quality.

# Run. In DONeRF and MIMO-DONeRF, # Run is calcu-
lated as 1 + Ns

Np
, where Ns indicates the number of sam-

ples selected by the depth oracle network and used as in-
puts in the shading networks, and Np indicates the number
of grouped samples. In DONeRF, Np is 1. In the above
equation, the first term, 1, represents # Run for the depth
oracle network, and the second term, Ns

Np
, represents # Run

for the shading network. The smaller the value of # Run,
the faster the rendering speed when the speed for each run
is the same.

https://repository.tugraz.at/records/jjs3x-4f133
https://repository.tugraz.at/records/jjs3x-4f133
https://github.com/facebookresearch/DONERF


B.3. Implementation details of TensoRF

B.3.1 Datasets

In the experiments described in Section 5.5, we evaluated
performance using the Blender and LLFF datasets. In par-
ticular, full-sized images were used. The details of these
two datasets are presented in Appendix B.1.1.

B.3.2 Model configurations

TensoRF. TensoRF was implemented using the official
source code provided by the authors [2].9 Particularly, in
the experiments described in Section 5.5, we used two vari-
ants of TensoRF to achieve the best image quality: For the
Blender dataset, we used TensoRF-VM-192-30k, which had
192 components with Rσ = 16 and Rc = 48. For the LLFF
dataset, we used TensoRF-VM-96, which had 96 compo-
nents with Rσ,1 = Rσ,2 = 4, Rσ,3 = 16, Rc,1 = Rc,2 =
12, and Rc,3 = 48. In the experiments described in Ap-
pendix A.9, we additionally used three variants of TensoRF:
For the Blender dataset, we used TensoRF-VM-48, which
had 48 components with Rσ = Rc = 8, and TensoRF-VM-
192-15k, which had the same network architecture as that
of TensoRF-VM-192-30k but the number of training itera-
tions was halved. For the LLFF dataset, we use TensoRF-
VM-48, which had 48 components with Rσ,1 = Rσ,2 = 4,
Rσ,3 = 16, Rc,1 = Rc,2 = 4, and Rc,3 = 16. In all mod-
els, a two-layer MLP with 128-dimensional hidden layers
and ReLU activation [7] was used as the RGB color de-
coding function. The MLP receives an embedding of the
viewing direction and features extracted from the tensor
factors. Embedding was performed using positional encod-
ing [6, 10] with frequencies of two.

MIMO-TensoRF. We applied the MIMO-NeRF concept to
the RGB color decoding function, that is, the two-layer
MLP, and changed this MLP from a SISO MLP to a MIMO
MLP. More precisely, we modified the MLP to receive Np

features, that is, (fi, . . . , fj), with view direction d, and pro-
duced Np RGB colors, that is, (ci, . . . , cj), where Np was
the number of grouped samples, and j = i+Np − 1. Other
parameters, such as the dimensions of the hidden units,
number of layers, and type of activation function, were the
same as those used in TensoRF. In the experiments, we var-
ied Np ∈ {2, 4, 8} and denoted MIMO-TensoRF with Np

as MIMO-TensoRF-Np.

B.3.3 Training settings

For a fair comparison, we trained TensoRF and MIMO-
TensoRF using the same training settings. As discussed
in Section 5.5, in MIMO-TensoRF, the correspondence am-
biguity is relatively small because the volume density, σ,
is calculated using an unambiguous explicit representation.

9https://github.com/apchenstu/TensoRF

Hence, we trained MIMO-TensoRF using standard Ten-
soRF loss functions and did not use LMIMO while prioritiz-
ing the training speed. Specifically, we trained TensoRF and
MIMO-TensoRF using the default settings provided in the
official TensoRF source code.9 The models were trained for
T iterations using the Adam optimizer [3] with initial learn-
ing rates of 0.02 for tensor factors and 0.001 for the MLP
decoder and momentum terms β1 and β2 of 0.9 and 0.99, re-
spectively. For the Blender dataset, T was set to 30k except
for TensoRF-VM-192-15k and MIMO-TensoRF-VM-192-
15k, where T was set to 15k. For the LLFF dataset, T was
set to 25k. The batch size was set to 4096 rays.

B.3.4 Evaluation metrics

We used eight evaluation metrics to assess the performance
of TensoRF and MIMO-TensoRF quantitatively: PSNR,
SSIM, LPIPSVGG, LPIPSAlex, # Run, I-time, T-time, and
# Params. PSNR, SSIM, LPIPSVGG, and LPIPSAlex were
used as image quality metrics following the original Ten-
soRF study [2]. I-time and T-time were used as the infer-
ence and training speed metrics, respectively. # Run and
# Params were provided as supplement information. The
definitions of PSNR, SSIM, I-time, T-time, and # Params
are the same as those in Appendix B.1.4. Detailed informa-
tion on the other three metrics (LPIPSVGG, LPIPSAlex, and
# Run) is as follows:
LPIPSVGG. This metric is identical to the LPIPS metric
described in Appendix B.1.4. LPIPSVGG measures the dis-
tance between two images by using the feature space of the
VGG network [9]. The smaller the LPIPSVGG, the better the
image quality.
LPIPSAlex. LPIPSAlex measures the distance between two
images using the feature space of the Alex network [?]. The
smaller the LPIPSAlex, the better the image quality.
# Run. In TensoRF and MIMO-TensoRF, only samples
with weights (i.e., Tiαi in Equation 2) greater than the
threshold were provided to the RGB decoding function.
Therefore, the number of samples, i.e., N , was adaptively
determined per scene and per pixel. Consequently, # Run =
N
Np

was also adaptively determined for each scene and pixel.
In our experiments, we report the values averaged over the
scenes and pixels.

https://github.com/apchenstu/TensoRF
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