
Guided Motion Diffusion for Controllable Human Motion Synthesis
Appendix

A. Analysis on x0,θ vs. ϵθ DPMs
In this section, we discuss the differences in behavior

between the x0,θ and ϵθ models used to train DPMs. While
both models are capable of generating high-quality samples,
their denoising processes differ significantly. In Section 4.2,
we previously claimed that the x0 predicting model max-
imizes its influence on the outcome xt−1 when t → 0,
whereas the ϵ predicting model maximizes its influence
when t → T . Based on this observation, we argue that
the ϵ predicting model is more favorable than the x0 pre-
dicting model in circumstances where the outcome of the
diffusion process will be altered by an external factor from
the classifier.

To further understand the behavior of the two models, we
examine Equation 1, which indicates that xt−1 is sampled
from a Normal distribution with mean

µt =

√
αt−1βt

1− αt︸ ︷︷ ︸
a

x0 +

√
1− βt(1− αt−1)

1− αt︸ ︷︷ ︸
b

xt (1)

The coefficients a and b in µt modulate the contribution of
the x0 model and the previous output xt. The larger the
coefficient a is relative to b, the larger the contribution of
the x0 model on the outcome of the denoising process.

In the case of an ϵ model, we substitute x0 based on the
relationship x0 = xt−

√
1−αtϵ√
αt

and get a different expression
for µt as

µt =

(
a

αt
+ b

)
︸ ︷︷ ︸

c

xt −
a
√
1− αt√
αt︸ ︷︷ ︸
d

ϵ (2)

We can see that the contribution of the x0 model and the
ϵ model are starkly different, with the ϵ model having a
stronger contribution on µt, and hence xt−1, where t is
large, while the opposite is true for the x0 model. In other
words, an ϵ model is restricted to make a smaller change
over time while an x0 model can still make a large change
even at the very end of the diffusion process.

From the analysis above, we conclude that the choice of
modeling ϵ or x0 is no longer arbitrary. Given the fact that
the classifier guidance strength is modulated by Σt, which
is smaller as t → 0, and the fact that all DPM models are bi-
ased toward their training datasets, an x0 model capable of
ever larger change as the guidance signal diminishes is not
an ideal choice because it could easily overpower the guid-
ance signal, especially at the end of the diffusion process,
undoing all the guidance signal. Therefore, our GMD’s tra-

0 200 400 600 800 1000
Timestep

0.0

0.2

0.4

0.6

0.8

1.0 x0's share
eps's share

Figure A.1. Comparing x0 and ϵ contributions in the prediction of
xt−1 based on the Cosine βi scheduler.

jectory model, which is subject to classifier guidance sig-
nals, is carefully chosen to be an ϵ model. We visualize the
relative share over time of each model on µt in Figure A.1
and show the impact of the choice of model in Figure 3 in
the main paper.

A.1. Challenges of modeling ϵ in practice

In Section A, we discussed the benefits of modeling ϵ
over x0 from the perspective of classifier guidance. How-
ever, there are fundamental differences and requirements for
architectures that excel in predicting x0 versus ϵ. Specifi-
cally, ϵ ∼ N (0, I) is independent and full-rank, meaning
there is no smaller latent manifold that it resides in. On the
other hand, x0 usually has a smaller latent manifold, which
is the case for many real-world data including motions as
most of the possible values in x ∈ R263×M are not valid
human motions, only a small subset of that is. Due to these
differences, it requires special considerations for architec-
tural design in models that successfully predict ϵ.

Although there is no sufficient reason to believe that
modeling ϵ is fundamentally harder than modeling x0, in
practice, modeling ϵ is restricted to cases where its shape is
relatively small compared to the latent dimension of the de-
noising model. For example, when modeling ϵ ∈ R263×M

for a motion DPM, the original MDM architecture for ϵ
prediction generated low-quality jagged motions compared
to the same architecture for x0 prediction, which produced
high-quality motions flawlessly. Increasing the latent di-
mension of MDM from 512 to 1,536 did not solve the prob-
lem entirely, indicating that predicting x0 and ϵ requires

different architectural designs that may not be satisfied by
a single architecture. We argue that there require further
studies on how to effectively design an ϵ predicting model.

However, when the space of ϵ is relatively small, such
as in a trajectory DPM, the choice of architecture seems
to matter less. The MDM transformer architecture was ap-
plied to trajectory modeling with relatively no problem. Ul-
timately, we used a convolution-based UNET with AdaGN
[2] as the final architecture for our proposed method, as it
demonstrated superior performance for both modeling tra-
jectories and motions.

B. Relative vs. Absolute root representation

In this section, we discuss different ways of represent-
ing the root locations z of the motion. Generally, the root
locations can be represented as absolute rotations and trans-
lations (abs) or relative rotations and translations compared
to the previous frame (rel). In MDM [10], the root loca-
tions are represented with relative representation following
the HumanML3D [3] dataset. In this case, the global loca-
tions at an exact frame i can be obtained by a cumulative
summation of rotations and translations before i.

However, we observe that representing the root with ab-
solute coordinates (abs) is more favorable than the relative
one (rel) in two aspects: being more straightforward for im-
putation and easier to optimize. Therefore, we adopt the
absolute root representation for our models.

In rel, a trajectory is described as velocity ∆z(i)/∆i in
the local coordinate frame of the current pelvis rotation.
This representation makes each z(i) dependent on all previ-
ous motion steps in a non-linear relationship. Optimization
becomes less stable as a small change in early motion steps
may compound and become a larger change later on. Also,
imputing specific values becomes ill-posed since there are
many possible sets of values that are satisfiable.

On the other hand, for abs, the imputation and optimiza-
tion of z become straightforward as they only involve re-
placing or updating z(i) without dependency on other mo-
tion steps. We ablated the root representation by retraining
MDM [10] and our model with both relative and absolute
root representation, then show the results in Tab B.1. MDM
shows a significant drop in performance when converted to
the absolute representation, likely because the architecture
is highly optimized for the relative representation, while for
our models, the representation change results in a trade-off
between the FID and R-precision.

Lastly, we note that the use of absolute root representa-
tion is necessary for our final model as the spatial guidance
is done via a combination of imputation and optimization.

Table B.1. Text-to-motion evaluation on the HumanML3D [3]
dataset. Comparision between relative and absolute root repre-
sentation. The right arrow → means closer to real data is better.

FID ↓ R-precision ↑
(Top-3)

Diversity →

Real 0.002 0.797 9.503

MDM [10] (rel) 0.556 0.608 9.446
MDM [10] (abs) 0.894 0.638 8.819

Ours (rel) 0.305 0.666 9.861
Ours (abs) 0.212 0.670 9.440

Ours xproj 0.235 0.652 9.726

C. Analysis on Emphasis projection

In this section, we discuss in greater detail our proposed
Emphasis projection. Conceptually, we wish to increase the
relative importance of the trajectory representation z within
the motion representation x. This could be done most sim-
ply by increasing the magnitude of those values of z by mul-
tiplying it with a constant c > 1. More precisely, let us as-
sume the shape of x is 263 × M . A single motion frame
x = x(i) is a column vector of 263 scalars in which 3 ele-
ments (rot, x, z) are a column vector of a trajectory frame
z = z(i) that comprises root rotation and a ground location.
The new trajectory elements become z × c.

How to calculate a suitable scalar c?
By introducing a scalar c > 1, the trajectory elements

z are given a higher relative importance than the remaining
260 elements in x. This relative importance is determined
by the cumulative variance of the z elements compared to
that of the remaining 260 elements. Assuming that all ele-
ments in x are independently and identically distributed ac-
cording to a standard Normal distribution N (0, 1), we can
represent the cumulative variance of the trajectory elements
as

Var[x(rot) + x(x) + x(z)] =
∑

j∈Traj.

Var[x(j)] = 3 (3)

where j ∈ Traj. refers to the indexes in x that are related to
trajectory.

Similarly, we can represent the cumulative variance of
the remaining 260 elements as Var[

∑
j /∈Traj. x

(j)] = 260,
where j /∈ Traj. refers to the indexes in x that are not related
to trajectory.

When we multiply trajectory by c, the new cumula-
tive variance becomes Var[c × (x(rot) + x(x) + x(z))] =
c2

∑
j∈Traj. Var[x

(j)] = 3c2. Therefore, the relative impor-
tance of the scaled trajectory elements compared to the re-
maining 260 elements in x is given by the expression

3c2

260 + 3c2
(4)

Setting c =
√

260
3 ≈ 9.3 results in a relative importance of

50%, which strikes a reasonable balance between the trajec-
tory and the rest of human motion. We have selected c = 10
as a rounded number of this fact, and it has been found to
work well in practice.

Maintaining the uniform unit variance after scaling
After scaling up the trajectory elements by a factor of c,

the variance of the new motion representation is no longer
uniform. This presents a problem when trying to model it
using the original DPM’s βt scheduler. In order to maintain
uniform variance, we can redistribute the increased values
from the trajectory part c × z to the rest in x via a random
matrix projection.

There are two reasons why a random matrix projection
is a good choice. First, it maintains the distance measure
of the original space with high probability, meaning that
the properties of the motion representation remain relatively
unchanged. Second, a random matrix projection is easy to
obtain and linear. It has an exact inverse projection, which
ensures that there is no loss of information after the projec-
tion.

Finally, to maintain unit variance, we scale down the en-
tire vector uniformly by a factor of 1

263−3+3c2 .

C.1. Trajectory loss scaling

One approach to increase the emphasis on the trajectory
part z(i) of the motion x(i) is to scale the reconstruction loss
of only the trajectory part during the training of the motion
DPM. This method does not change the representation but
can potentially increase the model’s emphasis on the trajec-
tory part of the motion compared to the rest of the motion.

To compare the loss scaling method with the proposed
Emphasis projection, we formulate a new loss function for
a specific motion frame i, which increases the trajectory im-
portance by a factor of k. This is given by the equation:

L(i)
k =

∑
j∈Traj.

∥∥∥kx̂(j) − kx(j)
∥∥∥2 + ∑

j /∈Traj.

∥∥∥x̂(j) − x(j)
∥∥∥2

(5)
Here, x̂ = x0,θ(xt)

(i) represents the i-th motion frame of
the DPM’s prediction and x = x0

(i) represents the i-th mo-
tion frame of the ground truth motion. The value of k mul-
tiplies inside the squared loss, resulting in k2 times more
importance on the trajectory part of the motion. For exam-
ple, setting k = 10 would increase the importance of the
trajectory part by 100-fold, which has the same scaling ef-
fect as setting c = 10 in Emphasis projection. Hence, the
reasonable range of k is the same as that of c.

In the main text, we experimented with k ∈ 1, 2, 5, 10
and found that Emphasis projection consistently outper-
formed loss scaling regarding motion coherence.

D. GMD’s Model Architecture
The trajectory and motion architectures of GMDare

both based on UNET with Adaptive Group Normalization
(AdaGN), which was originally proposed by [2] for class-
conditional image generation tasks. However, we have
adapted this model for sequential prediction tasks by us-
ing 1D convolutions. It should be noted that our archi-
tectures share some similarities with [5] with the addition
of AdaGN. The architecture overview is depicted in Figure
D.1 while the Adaptive Group Normalization is depicted in
Figure D.2. The hyperparameter settings of the two DPMs
are shown in Table D.1. We currently are in the process of
open-sourcing the code base of GMD.

Convolution-based architectures are commonly used in
state-of-the-art image-domain DPMs, such as those pro-
posed by [8] and [9]. On the other hand, transformer-based
architectures, which were used in the original MDM pro-
posed by [10], are not well-studied architectures for DPMs
[1, 7].

Our proposed architecture alone has led to a signifi-
cant improvement in motion generation tasks, reducing the
Fréchet Inception Distance (FID) by more than half com-
pared to the original MDM (0.556 vs 0.212), as shown in
Table 1 in the main paper.

Table D.1. Network architecture of our GMD’s models based on
the proposed 1D UNET with AdaGN.

Parameter Trajectory DPM Motion DPM

Batch size 512 64
Base channels 512 512
Channel multipliers [0.125, 0.25, 0.5] [2, 2, 2, 2]
Attention resolution No attention No attention
Samples trained 32M
β scheduler Consine [6]
Learning rate 1e-4
Optimizer AdamW (wd = 1e-2)
Training T 1000
Diffusion loss ϵ prediction x0 prediction
Diffusion var. Fixed small β̃t =

1−αt−1

1−αt
βt

Model avg. beta 0.9999

E. Training details
GMD’s models. We used a batch size of 64 for motion

models and a batch size of 512 for trajectory models. No
dropout was used in all of the GMD’s models: both trajec-
tory and motion. We used AdamW with a learning rate of
0.0001 and weight decay of 0.01. We clipped the gradient
norm to 1 which was found to increase training stability.

Mish + Linear

1D ResBlock + AdaGN

Input Output

× +

O
u

tp
u

t

M
is

h

M
is

h

1
D

 C
o

n
v

5

G
N

1
D

 C
o

n
v

5

G
N

In
p

u
t

Figure D.1. A simplified overview of our GMD’s 1D UNET +
AdaGN architecture that is designed to process two input signals:
the time step ψ(t) and a text-prompt embedding w. The time step
is encoded using sinusoidal functions, while the text-prompt em-
bedding is generated by the CLIP text encoder model, as described
in [10]. The ResBlock + AdaGN component of the model is ex-
plained in Figure D.2.

Mish + Linear

1D ResBlock + AdaGN

Input Output

× +

O
u

tp
u

t

M
is

h

M
is

h

1
D

 C
o

n
v

5

G
N

1
D

 C
o

n
v

5

G
N

In
p

u
t

Figure D.2. A single 1D ResBlock with Adaptive Group normal-
ization (AdaGN) [2]. The conditioning signal from the MLP,
shared across all ResBlocks, is projected by first applying a Mish
activation and then a resizing linear projection specific to each
ResBlock. All kernel sizes are 5. We use Mish activation func-
tion following [5].

We used mixed precision during training and inference. We
trained all motion models for 32,000,000 samples (equiva-
lent to 500,000 iterations at batch size 64, and 62,500 itera-
tions at batch size 512). We also employed the moving av-
erage of models during training (β = 0.9999) [4] and used
the averaged model for better generation quality. Do note
that our model architecture still improves over the baseline
MDM without the moving average.

GMD’s trajectory model. While the crucial trajectory
elements are only the ground x-z locations, we have found
it useful to train the trajectory model with all four compo-
nents (rot, x, y, z). The additional (rot, y) seem to provide
useful information that helps the model learn and reduce
overfitting in the trajectory model. Note that the trajectory
DPM is sensitive to the overfitting problem. Overtraining
the model will result in a strong trajectory bias in the model
making the model more resistant to classifier guidance and
imputation. Our choice of training the trajectory model for
32,000,000 samples was carefully chosen based on this ob-

servation.
Retraining of MDM models. We retrained the original

MDM using our absolute root representation and proposed
Emphasis projection as the two main baselines. In order to
maintain consistency, we kept the original optimization set-
tings for the MDM models. Specifically, we used AdamW
optimizer with a learning rate of 0.0001 and without weight
decay. We found that gradient clipping of 1 provided more
stability, so we also applied it here. We did not utilize mixed
precision training for these models. To match the settings of
the original MDM, we trained these models for 400,000 it-
erations at a batch size of 64.

F. Inferencing details
We have chosen the value of s as 100 for the classifier

guidance strength. Our experiments have shown that this
value of s performs well within the range of 100 to 200. For
all our goal functions Gx, we always used the p = 1 norm.
Whenever feasible, we implemented both imputation and
classifier guidance concurrently. However, we ceased the
guidance signals, i.e., classifier guidance and imputation, at
t = 20 as this led to a slight improvement in the motion
coherence.

Obstacle avoidance task. In this particular case, it was not
feasible to create a point-to-point trajectory because doing
so could potentially lead to a collision with an obstacle. As
a result, we decided against utilizing any point-to-point tra-
jectory imputation for this task.

References
[1] He Cao, Jianan Wang, Tianhe Ren, Xianbiao Qi, Yihao

Chen, Yuan Yao, and Lei Zhang. Exploring vision trans-
formers as diffusion learners. Dec. 2022. 3

[2] Prafulla Dhariwal and Alex Nichol. Diffusion models beat
GANs on image synthesis. May 2021. 2, 3, 4

[3] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji,
Xingyu Li, and Li Cheng. Generating diverse and natural 3d
human motions from text. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5152–5161, 2022. 2

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. June 2020. 4

[5] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey
Levine. Planning with diffusion for flexible behavior synthe-
sis. May 2022. 3, 4

[6] Alex Nichol and Prafulla Dhariwal. Improved denoising dif-
fusion probabilistic models. Feb. 2021. 3

[7] William Peebles and Saining Xie. Scalable diffusion models
with transformers. Dec. 2022. 3

[8] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-Resolution image
synthesis with latent diffusion models. Dec. 2021. 3

[9] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic Text-to-
Image diffusion models with deep language understanding.
May 2022. 3

[10] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir,
Daniel Cohen-Or, and Amit H Bermano. Human motion dif-
fusion model. Sept. 2022. 2, 3, 4

