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A. Detailed formulation of Diffusion Models

We provide a detailed introduction to Gaussian-based
diffusion models [5, 14]. Given the target data distribution
xo ~ q(xg), the goal of diffusion models is to learn a model
distribution py that approximates ¢, while being easy to
sample from. To achieve both objectives, diffusion models
define a forward process that gradually introduces noise
to the original data xg to generate a sequence of noised
data x1, x2, ..., xp. Additionally, a reverse process is defined,
which aims to denoise the noised data z; and produce less
noisy data x;_1. Once trained, Gaussian-based diffusion
models sample data x by first sampling zp from a Gaussian
distribution A/(0, I) and iteratively sampling x;_1 from the
previous step z;. To ensure z7 ~ N (0, 1), it is required for
T to be sufficiently large.

The forward process is formulated as a Markov chain
according to a variance schedule 81 < s < ... < fBr:
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Note that to sample z; ~ g(x¢|xo), it is not required to
apply forward diffusion ¢ times. Instead, using the notation
a; :=1— pyand &y := Hizl o, we have a closed form
expression:
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Consequently, we can view x; as a linear combination of g
and € ~ N.(0,I)(z; = /@rzo + /(1 — &z )e)

Given the fixed forward process, p is designed to ap-
proximate the unknown true posterior g(x;_1|z;). This is
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achieved through the use of a deep neural network with
learnable parameters 6.
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Ho et al. [5] proposed a specific parameterization for
o (2¢,t) such that the neural network outputs the estimated
noise €y instead of predicting 1.

( t) 1 ( 1— (673
(e, t) = — (2 — ——=¢
ROV S = et T—ap
For training, the variational lower bound is optimized and

simplifies the following Eq. (7) that enables the model to
learn how to predict the added noise.
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In practice, Ho et al. [5] uses a U-Net backbone [12] to
output the predicted noise ey which has the same dimen-
sionality as the input noisy sample x;. To solve an image-
to-image translation task, Saharia et al. [ 13] concatenates a
spatial conditioning input y to x; channel-wise and modifies
the learning objective as Eq. (8).
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A.l. Diffusion Training
B. Normal map-based mesh optimization

Camera parameters. In our normal map-based mesh opti-
mization method, we require camera parameters to rasterize
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Figure 1. Coarse-to-fine optimization. Starting from a decimated SMPL-X mesh, we perform optimization in a coarse-to-fine manner. By
increasing the resolution of the mesh for every 500 iterations, we progressively deform the mesh to match the input normal maps, without

losing high-frequency details.

the mesh into normal maps that are aligned with those gener-
ated from our dual-generation diffusion model. To generate
the frontal normal map of the initial SMPL-X mesh (ex-
plained in Sec. 3.1), we utilize a weak perspective camera
which shares the same parameters as our training data setup.
For the second mesh refinement stage (explained in Sec. 3.3),
we also employ weak perspective cameras that are defined
in the same manner for both body and face rendering.

Coarse-to-fine optimization. We adopt the coarse-to-fine
optimization strategy presented by NDS [17] for mesh op-
timization. Specifically, we begin with a coarse mesh and
progressively increase the resolution through a remeshing
technique, presented by Botsch and Kobbelt [1]. As demon-
strated in [ 7], initializing optimization with a large number
of vertices can lead to meshes with undesired geometry, such
as degenerate triangles and self-intersections. Therefore, we
start the optimization from a decimated version of our initial
SMPL-X, which contains 3,000 vertices [4]. During opti-
mization, for every 500 iterations, we apply remeshing [1]
to increase the model resolution. It is worth noting that each
iteration corresponds to a single gradient descent step, with
respect to the loss based on a randomly sampled normal
map. Following NDS [17], we perform optimization for a
total of 2,000 iterations and decreased the gradient descent
step size for the vertices by 25% after each remeshing. As
Fig. 1 shows, we can handle the large deviation from the
initial mesh without losing high-frequency details, due to the
coarse-to-fine optimization scheme.

Loss weight scheduling. While we follow the individual
loss objective terms and scheduling of NDS [17] for our
mesh optimization loss in Sec. 3.2, we added our side loss

term Lgiqes to the objective with weight term Agjqes = 0.1,
which we decrease by 10% after each remeshing. We also
set the loss weights for L,ormal €quivalent to Lgpading
in the original paper for NDS. During optimization, we
progressively increase the geometric regularization term
Liaplacian, Lier . to encourage the generation of smooth
surfaces for the final mesh. For the second mesh refinement
stage, which optimizes the earlier mesh based on the refined
normal maps from multiple views (total of 36 views), we set
Asides = 0 since the side views can now be well constrained
without the sidewise loss.

Refine by resampling. To refine the mesh from dual nor-
mal map-based optimization, we render both full body and
face normal maps and refine them with resampling technique
(Sec. 3.3). Here, we render 36-view normal maps with 10°
yaw interval, and set (to, K) to (0.02, 2), respectively, both
for body and face normal map refinement.

C. Qualitative Results

More generation results. Fig. 2 shows more random gen-
eration results from Chupa. We generate the human meshes
based on SMPL-X parameters from the AGORA dataset [9],
which includes SMPL, SMPL-X parameters fitted to 4, 240
3D human scans. We can generate human scans with various
identities and can be generalized to diverse poses.

Changing shape parameter 8. To control the shape of
the generated mesh, we can control the shape parameter 3
of input SMPL-X mesh [8, 10]. Fig. 3, Fig. 4 shows the
generated meshes according to the variation of 5 with fixed
pose parameter ©, where (31, B2 corresponds to the first and
second component of the shape parameter respectively [8].
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Figure 3. Changing shape parameter 3.
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Figure 4. Changing shape parameter (3-.
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Figure 5. Comparison with AvatarCLIP. The left two columns
are from AvatarCLIP, the right two columns are from Chupa (ours).

Figure 6. Depth ambiguity problem. Chupa may generate broken
geometry, due to the depth ambiguity problem of our mesh recon-
struction method(left: dual normal map, right: final mesh).

Figure 7. Face direction matters. Chupa may generate unnatural
face geometry, when the face direction is not aligned with the input
view (left: dual normal map, right: final mesh).

Figure 8. Out-of-distribution pose. Chupa may generate implau-
sible geometry for some out-of-distribution pose (left: SMPL-X,
middle: dual normal map, right: final mesh).

Comparison with AvatarCLIP. We compare our text-
guided generation results with AvatarCLIP [0], a text-guided
3D avatar generation pipeline that also initializes its 3D
implicit surface model [16] with a SMPL model. Once ini-
tialized, AvatarCLIP optimizes the 3D model based on a
CLIP loss [11] on the rendered results, to match the 3D
model according to the text description. Fig. 5 shows that
Chupa can generate more realistic 3D human mesh while
minimizing unnatural artifacts. Note that while AvatarCLIP
takes more than 3 hours to generate a mesh, Chupa takes 3
minutes with a single RTX3090.

D. Failure Cases

Depth ambiguity problem. Our dual normal map-based
mesh reconstruction method (Sec. 3.2) has inherent depth
ambiguity issues, as it only uses front and back-view normal
maps for the initial optimization. When the given normal
maps largely deviates from the initial SMPL model, e.g.,
long hair, the vertices for both head and shoulder deforms
to match the provided hairstyle, creating artifacts during
deformation. Fig. 6 shows that while the hairstyle seems to
be well-reconstructed in the front view, there exists unnatural
seams and broken geometry at close view.

Face direction matters. When the input pose contains
misaligned body and face direction, the final output might
display unnatural face geometry. For example, when the face
is turned to the side direction (Fig. 7), the diffusion models
might fail to generate realistic faces for reconstruction. To
make matters worse, the small distortion due to depth ambi-
guity during reconstruction (Sec. 3.2) can have huge impact
on the perceptual quality of faces. Fig. 7 shows an exam-
ple of such cases, where the resulting face mesh displays
unnatural geometry.

Out-of-distribution pose. While our method can be gener-
alized for diverse poses, there exists out-of-distribution poses
that the diffusion generative model fails to create plausible
normal maps from. Fig. 8 shows such examples of unrealistic
normal maps, which leads to 3D meshes with bad geometry.



E. User Study

We conduct a perceptual study asking user preference
between the meshes from our method and gDNA [2]. We
collect 100 participants through CloudResearch Connect [3]
and get 78 valid answers out of them. Each participants
are given 40 problems which consist of 20 problems for
body and 20 problems for face. Fig. 9 shows the example
problems.
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R
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Figure 9. User study problem example. The 3 views of mesh
from our method and gDNA [2] with the same SMPL parameter
are rendered as shading images. Each user is asked to choose more
realistic shapes between two rows, where each row corresponds to
the images from each method. Two rows are randomly shuffled.

F. Ablation Study

We present additional ablation study results on chang-
ing various hyperparameters such as resampling parameters,
sampling angle, and the sampling scheme for dual genera-
tion. In Tab. 1 and Tab. 2, we present the effect of choosing
different refinement parameters (to, K') and the sampling an-
gle during the refinement stage for both shaded and normal

maps of the resulting meshes. We also present the effect of
using different diffusion samplers in Tab. 3.

Table 1. Ablation study on resampling. We see the effects of
(to, K) both for body and face, with the number of views fixed as
36.

(tOv K)

BOdy Face FIDnormal J, FIDspage J,
(0.02,2) - 22.61 37.13
(0.02,4) - 26.68 46.19
(0.02, 6) - 31.39 51.98
(0.04,2) - 27.02 46.34
(0.06,2) - 31.71 52.65
(0.02,2) (0.02,2)  21.90 36.58
(0.02,2) (0.02,4)  22.42 37.57
(0.02,2) (0.02,6)  22.65 38.11
(0.02,2) (0.04,2) 22.41 37.64
(0.02,2) (0.06,2)  22.65 37.94

Table 2. Ablation on the number of views for refinement. We
see the effects of the number of views for refinement with t¢ =
0.02, K = 2 as fixed.

Nviews gstep FIDnormal »L FIDshade \I/

4 90° 30.88 41.85
6 60° 29.01 41.30
12 30° 25.21 39.53
36 10° 21.90 36.58

Table 3. Ablation on sampling scheme. We ablate on the sampling
scheme of our diffusion model for dual normal map generation.
Here, we compute FID scores based on the results of dual normal
map-based optimization without refinement.

Method FIDnormal i FIDghade \l/
Euler [7] 28.84 37.36
DDIM [15] 26.76 34.79
DDPM [5] 26.31 37.13

Refine by resampling. Tab. 1 shows the effects of varying
(to, K) for resampling. The first 6 rows show the results of
varying (to, K) for body normal map refinement without
face refinement. And the next 6 rows show the results of
varying (to, K') for face normal map refinement with fixed
(to, K) for body normal map refinement. For both body and
face, the smaller forward time steps and fewer iterations
show better performance since large forward steps or many
iterations may lead to the normal map inconsistent with the
original normal maps.



The number of views for mesh refinement. Tab. 2 shows
the performance with the varying number of views used for
the mesh refinement stage (Sec. 3.3), where Nyicws, Ostep
correspond to the number of views and the yaw interval be-
tween views respectively. Here, the hyperparameters (to, K)
for resampling are fixed as (0.02, 2). It shows that increasing
the number of views leads to better performance.

Sampling scheme of the diffusion model. As mentioned
in Sec. 4.1, we generate dual normal maps with the same
denoising steps used during training, which is the sampling
scheme of DDPM [5]. Here, we ablate on the different sam-
pling schemes for diffusion probabilistic models, with two
additional samplers [7, 15] set to ¢ = 50. Tab. 3 shows that
the sampling scheme doesn’t affect the performance signif-
icantly. Note that we compute the score without the mesh
refinement stage (Sec. 3.3) to analyze the effects of the sam-
pler since the refinement stage only involves a small number
of denoising steps.
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