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A. Details of ALFRED Benchmark

The task goal is to generate a sequence of actions and
object masks for interaction with the corresponding objects
such that an agent satisfies all conditions that define the task
to be successful. If the agent does not satisfy even a single
condition, the agent is considered failed at the task.

To train and assess such agents, the benchmark consists
of three splits; ‘train,’ ‘validation,’ and ‘test.’ Agents can be
trained with the ‘train’ split and validate their approaches
in the ‘validation’ split with the ground-truth information
of the tasks in those splits. The agents are then evaluated
in the ‘validation’ and ‘test’ split but they do not have any
access to the ground-truth information of the tasks.

To complete a task, the agent receives a goal statement
that provides a high-level description of the task’s goal and
step-by-step instructions that provide detailed explanations
for how to complete respective steps (i.e., sub-goals). Given
the goal statement and step-by-step instruction, the agent
receives an egocentric RGB image in the shape of 300×300
and takes an action and an object mask for each time step.

The action space of the agent consists of five naviga-
tion actions, seven interaction actions, and a STOP action
that indicates the termination of task completion. The
navigation actions are MOVEAHEAD for moving ahead,
ROTATERIGHT/ROTATELEFT for rotating right/left to 90◦,
and LOOKUP/LOOKDOWN for looking up/down to 15◦.
The interaction actions are PICKUPOBJECT for picking
up an object (e.g., an apple, a potato, etc.), PUTOB-
JECT for putting an object in a receptacle (e.g., a counter-
top, a desk, etc.), OPENOBJECT/CLOSEOBJECT for open-
ing/closing an object (e.g., a cabinet, a drawer, etc.), TOG-
GLEOBJECTON/TOGGLEOBJECTOFF for turning on/off an
object (e.g., a microwave, a lamp, etc.), and SLICEOBJECT
for slicing an object (e.g., a tomato, a bread, etc.). For ob-
ject interaction, the agent has to additionally predict a bi-

nary object mask in the same shape as the RGB image (i.e.,
300× 300), and the agent interacts with the object to which
the highest number of the mask pixels belongs.

For evaluation, the benchmark uses three types of met-
rics; success rate (SR), goal-condition success rate (GC),
and PLW scores (PLWSR and PLWGC). The primary met-
ric is the success rate (SR) which measures the percentage
of completed tasks. This metric indicates the task com-
pletion ability of the agent. Another metric is the goal-
condition success rate (GC) which measures the percentage
of satisfied goal conditions. This metric indicates the partial
task completion ability of the agent. Finally, path-length-
weighted (PLW) scores penalize SR and GC by the length
of the agent’s actions. This metric indicates the ability to
complete tasks efficiently.

B. Additional Qualitative Analysis
B.1. Context-Aware Planning

In the same manner as in Figure 5 and 6 in the main
paper, we provide another qualitative example in Figure 1.
Figure 1 also shows similar results for the task (“Put a clean
spoon in a drawer.”). ‘CAPEAM w/o CAP’ can pick up
the relevant object, a spoon, and clean it as described in the
instruction but tries to pick up a task-irrelevant object, a la-
dle, instead of the spoon due to the wrong object prediction,
leading to task failure. On the other hand, CAP enables our
agent to keep interacting with the task-relevant object (i.e.,
the spoon) and the agent finally puts the spoon in a drawer
as described in the instruction, implying the impact of CAP.

B.2. Environment-Aware Memory

Like Figure 7 and 8 in the main paper, Figure 2 shows
the impact of Object Location Caching (Sec. 3.2). This
enables our agent to preserve the location and mask of an
object with a changed state so that the agent can utilize the
information when necessary. Although our agent without
EAM (‘CAPEAM w/o EAM’) successfully slices an object
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Figure 1: Another qualitative example of our agent with and
without the ‘Context-aware Planning’ (CAP). The elements of
the ‘context’ are denoted by cO in yellow, cM in blue, and cR in
green. Our method (CAPEAM) plans a sequence of sub-goals with
task-relevant objects. However, ‘CAPEAM w/o CAP’ interacts
with task-irrelevant objects (i.e., Ladle), leading to task failure.

(here, an apple) and puts the knife back on the countertop,
the agent does not memorize the object’s location and there-
fore it has to explore the environment to navigate to the
apple whose state changes (i.e., sliced). In this example,
the agent fails at reaching the sliced object and eventually
fails at the task. However, our agent equipped with EAM
(‘CAPEAM’) preserves the location and mask of the sliced
object and can navigate back to the saved location, which
reduces unnecessary exploration and possible task failure.
In this example, the agent successfully reaches the sliced
objects and moves them to the designated countertop.

C. A Video with Additional Qualitative Results
We also provide an additional qualitative analysis in the

attached video files. The video contains two qualitative ex-
amples of the ablation of each ‘Context-Aware Planning
(CAP)’ and ‘Environment-Aware Memory (EAM),’ respec-
tively. The agents for the video take as input only the goal
statement (i.e., no step-by-step instructions).

C.1. Example 1: Context-Aware Planning

For the task “Throw two bars of soap in the trash bin,”
our agent without CAP (noCAP.mp4) predicts an object ir-
relevant to the task (i.e., SoapBottle), which is out of context
(i.e., cO = SoapBar, cM = None, and cR = GarbageCan).
Although the agent succeeds in implementing the agent-
executable actions, they lead to an undesired result (i.e.,
move a soap bottle, not a soap bar) and thus the agent fails.

However, our agent equipped with CAP (CAP.mp4) cor-
rectly plans to pick two ‘SoapBar’ objects and succeeds in
taking all the planned executable actions. As the actions
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Figure 2: Another qualitative example of the benefit of
‘Environment-aware Memory’ (EAM) (for ‘Object Location
Caching’). While our agent without EAM (‘CAPEAM w/o EM’)
succeeds in slicing the target object (i.e., ‘Apple’) and putting the
knife on the countertop, the agent does not remember the location
of the sliced object and therefore it has to explore the environment
again to reach the sliced object, eventually leading to task failure.
However, after slicing the apple and putting the knife on the coun-
tertop, our agent with EAM (‘CAPEAM’) remembers the location
of the object with the changed state (i.e., a ‘sliced’ apple) with its
mask and thus our agent can navigate back to its location and suc-
cessfully move two sliced apples to the designated countertop.

lead to the desired result (i.e., move two soap bars), the
agent finally succeeds, implying the CAP’s efficacy.

C.2. Example 2: Environment-Aware Memory

For the task “Put a cup with a fork in it in the sink,” while
our agent without EAM (noEAM.mp4) can predict a cup



without a fork, it cannot recognize the cup with a different
visual appearance (i.e., the cup with the fork) and thus the
agent interacts with the wrong object, “Pan,” and fails.

On the other hand, after putting the fork in the cup, our
agent with EAM (EAM.mp4) can still recognize the cup
thanks to the preserved mask in EM used as an approxi-
mation of the mask with a different visual appearance. The
agent succeeds in conducting all predicted actions and fi-
nally completes the task, which implies the impact of EAM.


