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A. Videos
We provide supplementary videos that presents a

more comprehensive visualization and demonstration of
the effectiveness of our PODIA-3D method in adapt-
ing 3D generators across significant domain gaps at
gwang-kim.github.io/podia_3d. The videos show-
cases the high level of text-image correspondence achieved
as well as the high quality of 3D shapes, achieved by our
approach.

B. Details on Methods
B.1. SD vs DGD vs PPD

Stable diffusion (SD) [28] is a latent-based text-to-image
diffusion model. This model is composed of frozen VQ-
GAN [4] encoder & decoder and a noise prediction model
ϵSD
ϕ , which is conditioned on time and text. The VQGAN

encoder [4] EV encodes an image x into a latent vector
q0 = EV (x) and the decoder DV converts the latent to
the reconstructed image x̂ = DV (q0). To train the noise
prediction model ϵϕ, the latent q0 is first perturbed into
qt =

√
ᾱtq0 +

√
1− ᾱtϵ through the forward diffusion [8],

where ϵ ∼ N (0, 1), t ∼ U([1, T ]), ᾱt is noise schedule,
and T is the total diffusion steps. In SD, T is set to 1, 000.
Then, the noise prediction model ϵSD

ϕ is trained to predict
the noise ϵ included in qt, given qt, t and the text prompt y
representing x, using following objective:

Ex,y,ϵ,t[∥ϵ− ϵSD
ϕ (qt, y, t)∥22],

where (x, y) are image-text pairs. In the noise prediction
model ϵSD

ϕ , the text prompt y is encoded to the text embed-
ding through the CLIP [24] text encoder and the time t is
converted to the time feature using the Fourier feature [34].
To enable classifier-free guidance [9], a single diffusion
model is trained on conditional and unconditional objectives
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Figure S1. Comparison of training process for 3 different
diffusion models: (a) Stable diffusion [28], (b) depth-guided
diffusion [28] and (c) our pose-preserved diffusion.

by randomly dropping y to ∅. The noisy latent qt is given to
the input of the first convolution layer of the UNet-based [29]
autoencoder while the time feature and the text embedding
are conditioned on the normalization layers through cross-
attention [35] mechanism.

Depth-guided diffusion model (DGD) [28] is a variant
of SD [28], where the depth map d = h(x) is predicted
from x using the pretrained depth estimation model h and
concatenated with qt, and used as input to the UNet [29]
autoencoder as an extra conditioning. The DGD noise pre-
diction model ϵDGD

ϕ is fine-tuned from the pretrained ϵSD
ϕ

using following objective:

Ex,y,ϵ,t[∥ϵ− ϵDGD
ϕ (qt, y,d, t)∥22],

https://gwang-kim.github.io/podia_3d


Algorithm 1: Text-guided image-to-image transla-
tion (T-I2I)

Input: ϵϕ ∈ {ϵSD
ϕ , ϵDGD

ϕ , ϵPPD
ϕ }, EV , DV , y, tr, s, *

1 Function T_I2I(xsrc, y, ϵϕ, *):
2 q0 = EV (xsrc), ϵ ∼ N (0, I)

3 qtrg
tr =

√
ᾱtrq0 +

√
1− ᾱtrϵ

4 if ϵϕ ∈ {ϵDGD
ϕ , ϵPPD

ϕ } then
5 d = h(xsrc)

6 for t = tr, tr − 1, . . . , 1 do
7 if ϵϕ ∈ {ϵDGD

ϕ , ϵPPD
ϕ } then

8 ϵ̃ = sϵϕ(q
trg
t , y,d, t) \

+ (1− s)ϵϕ(q
trg
t ,∅,d, t)

9 else
10 ϵ̃ = sϵϕ(q

trg
t , y, t) + (1− s)ϵϕ(q

trg
t ,∅, t)

11 qtrg
t−1 = Sampling(qtrg

t , ϵ̃, t)

12 xtrg = DV (qtrg
0 )

13 return xtrg

where (x, y) are image-text pairs. DGD is fine-tuned from
the pretrained SD.

Our pose-preserving diffusion model (PPD) has the same
architecture as DGD, but it is trained differently. It uses the
depth map dsrc = h(xsrc) from the source image xsrc, but
the latent qtrg

0 = EV (xtrg) from the target image xtrg, giving
the noisy latent qtrg

t =
√
ᾱtq

trg
0 +
√
1− ᾱtϵ. The PPD noise

prediction model ϵPPD
ϕ is fine-tuned from the pretrained ϵDGD

ϕ

using following objective:

Exsrc,xtrg,ytrg,ϵ,t[∥ϵ− ϵPPD
ϕ (qtrg

t , ytrg,dsrc, t)∥22],

where (xsrc,xtrg, ytrg) are a set of the source image, the target
image and the target text.

Text-guided image-to-image translation (T-I2I) is a tech-
nique that combines diffusion-based image-to-image trans-
lation [21] with text-to-image diffusion models [28, 25, 30].
The generalized T-I2I algorithm for ϵSD

ϕ , ϵDGD
ϕ or ϵPPD

ϕ is
described in Algorithm 1. Initially, we convert xsrc to
q0 = EV (xsrc) using the VQGAN encoder [4] EV and
perturb it to generate qtrg

tr where tr ∈ [1, T ] is the return step.
Next, qtrg

0 is obtained from the noisy latent qtrg
tr by proceed-

ing the sampling process using ϵϕ ∈ {ϵSD
ϕ , ϵDGD

ϕ , ϵPPD
ϕ }. The

guidance scale s is used to adjust the scale of gradients from
the target prompt y and the empty prompt ∅. Finally, we can
obtain the target image xtrg = DV (qtrg

0 ) using the VQGAN
decoder [4] DV . Any sampling method such as DDPM [8],
DDIM [32], PLMS [20] can be used.

The comparison of the training process for each model is
shown in Fig. S1.

B.2. Specialized-to-general sampling

In the initial ηT phase, with η ∈ [0, 1] representing the
PPD ratio, we leverage the PPD model to produce major

Algorithm 2: Specialized-to-general sampling

Input: ϵSD
ϕ , ϵPPD

ϕ′ , EV , DV , y, tr, η, s,h *
1 Function S_to_G(xsrc, y, ϵSD

ϕ , ϵPPD
ϕ′ , *):

2 q0 = EV (xsrc), ϵ ∼ N (0, I)

3 qtrg
tr =

√
ᾱtrq0 +

√
1− ᾱtrϵ

4 d = h(xsrc)
5 for t = tr, tr − 1, . . . , 1 do
6 if tr > (1− η)T then
7 ϵ̃ = sϵPPD

ϕ′ (qtrg
t , y,d, t) \

+ (1− s)ϵPPD
ϕ′ (qtrg

t ,∅,d, t)

8 else
9 ϵ̃ = sϵSD

ϕ (qtrg
t , y, t) + (1− s)ϵSD

ϕ (qtrg
t ,∅, t)

10 qtrg
t−1 = Sampling(qtrg

t , ϵ̃, t)

11 xtrg = DV (qtrg
0 )

12 return xtrg

structural components and pose information. For the remain-
ing (1−η)T duration, we employ Stable diffusion models to
generate smaller image details or structures. The specialized-
to-general sampling process is outlined in Algorithm 2.

B.3. Text-guided adaptation of 3D generative mod-
els

We utilize the total loss Ltotal = LADA + λLden, which
includes both the ADA loss and the density regularization
loss. Here are the details on the losses used for adversari-
ally fine-tuning the 3D generator following the fine-tuning
process in [16, 2].

ADA loss. The ADA loss, LADA [12], is an adversarial
loss that incorporates adaptive dual augmentation and R1
regularization. Specifically, the loss is defined as follows:

LADA = Ez∼Z,c∼C [f(Dω(A(Gθ(z, c)), c)] (S1)

+ E(c,xtda)∈Dtda [f(−Dω(A(xtda), c) + λ∥∇Dω(A(xtda), c)∥2)]

where A is a stochastic non-leaking augmentation operator
with probability p and f(u) = − log(1 + exp(−u)).

Density regularization loss. We also employ density reg-
ularization, which has been proven to be useful in mitigating
the occurrence of undesired shape distortions by encourag-
ing smoothness in the density field [2]. For each rendered
scene, we randomly select points v from the volume V , as
well as additional perturbed points that have been slightly
distorted by Gaussian noise δv. We then compute the L1
loss between the predicted densities, as shown below:

Lden = Ev∈V [∥σθ(v)− σθ(v + δv)∥]. (S2)

Algorithm for our text-guided adaptation of 3D generative
models is provided in Algorithm 3. We translate the source



Algorithm 3: Text-guided adaptation of 3D genera-
tive models

Input: Gθ, Dsrc, ϵSD
ϕ , ϵPPD

ϕ′ ,K, A, f , *
Output: Gθ′

// Pose-aware target dataset generation

1 Dtda = {}
2 for i = 1, 2, . . . , N do
3 (ci,x

src
i ) ∈ Dsrc

4 xtda
i =S_to_G(xsrc

i , y, ϵSD
ϕ , ϵPPD

ϕ′ , *)
5 Append (ci,x

tda
i ) to Dtda

// Adversarial fine-tuning of 3D generators

6 Gθ′ ← clone(Gθ), Dω ← Initialize D
7 for k = 1, 2, . . . ,K do
8 for i = 1, 2, . . . , N do
9 zi ∈ Z , ci ∈ C, vi ∈ V

// Update Gθ′

10 LG
ADA = −f(Dω(A(Gθ′(zi, ci)), ci)

11 Lden = ∥σθ′(vi)− σθ′(vi + δvi)∥
12 θ′ ← Update_G(θ′,LG

ADA + λdenLden)
// Update Dω

13 LD,fake
ADA = f(Dω(A(Gθ′(zi, ci)), ci)

14 (ci,x
tda
i ) ∈ Dtda

15 LD,real
ADA = f(−Dω(A(xtda), ci)

16 +λ∥∇Dω(A(xtda), ci)∥2)
17 ω ← Update_D(ω,LD,fake

ADA + LD,real
ADA )

image xsrc to yield the target image xtda guided by a text
prompt y using PPD and specialized-to-general sampling,
constructing a set of (c,xtda). Initially, we duplicate the pre-
trained 3D generator, Gθ, to create Gθ′ . We also initialize
a pose-conditioned discriminator, Dω. For i = 1, 2, ..., N ,
we start by sampling a random latent vector z and camera
parameter c. We then compute the ADA loss for the gen-
erator, denoted as LGADA, using the generator Gθ′(zi, ci),
the discriminator Dω, and the stochastic non-leaking aug-
mentation A. Additionally, for each rendered scene, we
randomly select points v from the volume V to calculate
the density regularization loss Lden, along with another loss.
These losses are then used to update the generator. Subse-
quently, we calculate the ADA losses for the discriminator
using both generated images, denoted as LD,fake

ADA , and real
target images, denoted as LD,real

ADA . These two losses are then
combined to update the discriminator. We repeat this process
for K epochs.

C. Implementation Details

C.1. 3D generative model

We select EG3D [2], which is a state-of-the-art 3D-aware
generative model, as our source generator. Especially, we

adopt EG3D [2] pretrained on 5122 images in FFHQ [14].
The EG3D generator is comprised of four main components:
a backbone, a decoder, a volume rendering module, and
a super-resolution component. The backbone features the
StyleGAN2 [15] generator and a mapping network. The
decoder, on the other hand, is a multilayer perceptron that
has a single hidden layer. The super-resolution module,
which utilizes two StyleGAN2 blocks, is also integrated into
the generator. Lastly, the EG3D discriminator is based on a
StyleGAN2 discriminator that features dual discrimination
and camera pose-conditioning.

C.2. Text-to-image diffusion models

We utilized Stable diffusion v2 [28], which comprises
of several components such as the VQGAN encoder and
decoder [4], UNet-based autoencoder [29], and OpenCLIP-
ViT/H text encoder [24, 31, 11]. To train this model, we used
a filtered subset of LAION-5B [31]. Specifically, the model
underwent training for 550k steps on 2562 images, 1,000k
steps on 5122 images, and 140k steps on 7682 images.

We utilize the depth-guided diffusion model [28] for our
experiments. It is trained for 550k steps on 2562 images and
for 850k steps on 5122 images in a filtered subset of LAION-
5B [31], without the use of a depth map. To incorporate
depth information, we modify the UNet autoencoder [29] by
adding an additional input channel to receive the depth map
generated by MiDaS [26, 27]. The depth-guided diffusion
model is fine-tuned for 200k steps on 5122 images in the
same dataset with the updated architecture.

We utilize DEIS [42] as our diffusion sampling method,
which is a state-of-the-art method that accelerates the diffu-
sion process while maintaining high quality. We configure
the number of inference steps to 30 and set the return step tr
and guidance scale s to 990 and 10, respectively.

C.3. Depth estimation network

We utilize MiDaS [26, 27] as our depth map estima-
tion model, which computes relative inverse depth from
a single image. This transformer-based model is trained on
12 distinct datasets, including WSVD [36], TartanAir [38],
IRS [37], KITTI [6], MegaDepth [19], ApolloScape [10],
HRWSI [40], ReDWeb [39], DIML [17], Movies, Blended-
MVS [41], and NYU Depth V2 [22]. The model is trained
using multi-objective optimization to ensure high quality on
a wide range of inputs.

C.4. Details on training of PPD

We generated 3,000 source images and corresponding
depth maps using the pre-trained EG3D [2] model on
FFHQ [14] and MiDaS [26, 27]. For the target images,
we first created 3,000 identity-mixed images and then gen-
erated an additional 3, 000 × 5 images using text-guided



Figure S2. Qualitative comparison between our text-guided domain adaptation results and other baselines. We enable
EG3D [2] to synthesize the multi-view consistent images in wide range of text-guided domains (animals & characters) with
high text-image correspondence and high quality of 3D shape. For the results of pose-controlled synthesis, please see the
supplementary videos.

image-to-image translation with 9 text prompts that guar-
antee pose preservation. To further increase the variety of

target images, we collected 3,000 images using the EG3D
model pre-trained on AFHQ-cat [13, 3] and translated them



Figure S3. Qualitative comparison between our text-guided domain adaptation results and other baselines. We enable
EG3D [2] to synthesize the multi-view consistent images in wide range of text-guided domains (characters) with high text-
image correspondence and high quality of 3D shape. For the results of pose-controlled synthesis, please see the supplementary
videos.

using 6 prompts, resulting in a total of 3, 000 × 3 target
images.

We conduct fine-tuning of the depth-guided diffusion
models on this dataset for 2 epochs using Adam opti-



Figure S4. Results of text-guided image-to-image translation and text-guided domain adaptation of EG3D [2] using Stable
diffusion (SD) [28], depth-guided diffusion (DGD) [28], our pose-preserved diffusion (PPD), and specialized-to-general
(S-to-G). Pose-preserved diffusion enables image translation with pose-consistency and domain adaptation with high-quality
of 3D shapes. S-to-G allows to resolve the bias issue in details.

Figure S5. Results of debiasing human face images for ages.

mizer [18] and a batch size of 2 until the models have been
trained on 50k∼100k images. The entire process takes ap-
proximately 15 hours using a single NVIDIA RTX 3090.
Once trained, the models can be applied to any text prompt.

C.5. Details on text-guided adaptation of 3D gener-
ative model

We fine-tune the 3D generative models by using a batch
size of 20 and training them until they have been exposed
to 50k∼100k images. Both the generator and discriminator
are optimized using Adam [18] with a learning rate of 0.002.
During training, we apply image blurring with progressively
diminishing degree as the input to the discriminator, as sug-
gested by [13, 2], and we do not use style mixing. We employ
ADA loss combined with R1 regularization (λ = 5) and add

Figure S6. Domain adaptation to certain non-living objects
such as chairs and hamburgers, which lack directional infor-
mation, results in low text-image correspondence.

a density regularization term with strength λden = 0.25.

Using EG3D and PPD with a DEIS [42] scheduler and
30 inference steps, it takes 1.8 seconds to translate and
save one image on a single NVIDIA A100. We generated
1,000 target images for each text prompt in most experi-
ments, taking an average of 30 minutes for text-guided target



dataset generation. We update the 3D generator with a batch
size of 20 using 50k∼100k training images depending on
the target text prompt, which takes 1.5∼3 hours for each
prompt. Unlike the DATID-3D [16] pipeline, our method
does not require time-consuming CLIP-based filtering pro-
cess and pose reconstruction-based filtering process that take
30 minutes∼1 hour additionally, making our pipeline more
efficient and simplified.

C.6. Details on specialized-to-general sampling

Thus, we set the PPD ratio to 0.4 to preserve the pose
as well as improve details. We will include details in the
revision.

C.7. 3D shape visualization

We utilize marching cubes to obtain iso-surfaces from
the density field using marching cubes, as described in [2].
After that, We use UCSF Chimerax [7] to visualize the 3D
surfaces.

D. Experimental Details
D.1. Text prompts

We construct the prompts by combining domain-
specifying words (e.g. Dog) with preset prompts (e.g. a
FHD photo of) following previous works for text-guided do-
main adaptation [1, 5, 16]. Throughout the main paper and
its supplementary materials, we employ a brief text prompt
to denote each individual text prompt.

Text prompts for training PPD. For images from identity
mixing and a different domain generator, we create target
domain prompts ytrg using specifying words representing
source domains (e.g. human). For images from T-I2I with
pose-guaranteed prompts yp-guar, we use yp-guar as ytrg. We
chose the prompts that guarantee pose-consistency after the
text-guided translation based on our observation. Specifi-
cally, we started with the text prompts used in the previous
works [1, 5, 16] and two evaluators carefully assess the re-
sults of the translation in terms of pose consistency and
text-image correspondence. We also empirically select new
prompts following the same evaluation process. Table S1
lists complete text prompts used to collect the target images
for training our pose-preserved diffusion model.

Text prompts for the results. The complete text prompts
used for the results to each concise prompt are summarized
in Tablee S2.

Text prompts for text-guided debiasing. We obtained the
information on subclasses from ChatGPT. Then, we make
the subclass text ytrg,A

i by replacing superclass specifying

word in superclass text ytrg with subclass specifying word.
The complete text prompts that correspond to each subclass
prompt used for text-guided debiasing can be found in Ta-
ble S3.

D.2. Baselines

In StyleGAN-NADA∗ that is a extended version of
StyleGAN-NADA [5] to 3D generative model, we update the
EG3D model [2] using the directional CLIP loss as follows:

Ldir-CLIP = 1− ⟨∆I,∆T ⟩
∥∆I∥∥∆T∥ , (S3)

where ∆I = EC
I (xgen) − EC

I (xsrc),∆T = EC
T (ytar) −

EC
T (ysrc). We follow the instructions provided in the paper

and implement the loss and optimization part using the of-
ficial StyleGAN-NADA codebase [5]. To obtain the best
results, we performed early stopping during total 2,000 itera-
tions of model training.

In HyperDomainNet∗, a 3D extension of HyperDomain-
Net [1], an indomain angle consistency loss is included in
addition to the directional CLIP loss to maintain CLIP simi-
larities between images before and after domain adaptation.

Lindomain =

n∑
i,j

(⟨EC
I (xgen

i ), EC
I (xgen

j )⟩ − ⟨EC
I (xsrc

i ), EC
I (xsrc

j )⟩)2,

(S4)

We follow the instructions provided in the paper and im-
plement the loss and optimization part using the official
HyperDomainNet codebase [1]. To obtain the best results,
we performed early stopping during total 2,000 iterations of
model training.

StyleGANFusion [33] adopts the SDS loss [23] to guide
the text-guided adaptation of 2D and 3D generators using
text-image-diffusion models, as defined:

LSDS = Et,ϵ[||ϵϕ(xt, y, t)− ϵ||22] (S5)

where x is a perturbed image or latent thorugh forward
diffusion, ϵ ∼ N (0, 1), t ∼ U([1, T ]), and T is the total
diffusion steps. We employ LPIPs regularization [43] and
fine-tune the EG3D model [2] for 2,000 iterations following
the instructions in the paper.

In DATID-3D [16], pose-aware target dataset is gener-
ated using Stable diffusion [28]. Then, the target dataset
is refined through CLIP-based filtering process and pose
reconstruction-based filtering process. After that, EG3D
model [2] is fine-tuned on the filtered dataset. We faithfully
follow the implementation details in the paper. We gener-
ate 3,000 target images per target prompts and fine-tune the
pretrained EG3D model [2] with a batch size of 20 making
steps on 50k∼100k training images.



Table S1. List of text prompts used to collect target images for training our pose-preserved diffusion model.

Strategies Full text prompts

Identity mixing "a FHD photo of a human face"

Pose-guranteed prompts

"a 3D render of a face in Pixar style"
"a 3D render of a face of Lizardman monster in fantasy movie"

"a 3D render of a face of Minotaurus in fantasy movie"
"a 3D render of a head of a Lego man 3D model"

"a 3D render of a Stone Golem head in fantasy movie"
"a FHD photo of a face of a Skeleton in fantasy movie"

"a FHD photo of a face of Monkey"
"a FHD photo of white Greek statue face"

Different domain generator "a FHD photo of a Cat face"

Different domain pose-guranteed prompts

"a 3D render of a face of a Cat in Zootopia style"
"a 3D render of a face of a Pig in Zootopia style"

"a 3D render of a face of a Sheep in Zootopia style"
"a FHD photo of a face of a Wol"

Table S2. List of complete text prompts that corresponds to each concise prompt.

Text types Concise prompts Full text prompts

Characters

SpongeBob "a FHD photo of a face of SpongeBob"
Sesame Street "a FHD photo of a fluffy character from ’Sesame Street’ "

Rango "a 3D render of a face of Rango from ’Rango’"
Jack Skellington "a FHD photo of a face of Jack Skellington from ’The Nightmare Before Christmas’"

Minions "a 3D render of Doraemon"
Homer Simpson "a 3D render of Homer simpson"

Doraemon "a 3D render of yellow Minion with two eyes from the ’Despicable Me’ franchise"
Sonic "a FHD photo of a face of Sonic the Hedgehog from ’Sonic the Hedgehog’"

Shaun the Sheep "a FHD photo of Shaun the Sheep"
Teddy bear "a FHD photo of a Teddy bear"
Barbie doll "a FHD photo of a barbie doll"

Scooby-Doo "a 3D render of Scooby-Doo"

Animals

Elephant "a FHD photo of a face of a Elephant"
Turtle "a FHD photo of a face of a Turtle"
Horse "a FHD photo of a face of a Horse"
Iguana "a FHD photo of a face of a Iguana"

Cameleon "a FHD photo of a face of a Cameleon"
Bear "a FHD photo of a face of a Bear"
Dog "a FHD photo of a face of a Dog"
Goat "a FHD photo of a face of a Goat"
Cow "a FHD photo of a face of a Cow"

D.3. User study

To evaluate the quality of the generated samples and 3D
shapes from the shifted generators from five different meth-
ods of text-guided domain adaptation for 3D generative mod-
els including our PODIA-3D, we conducted a user study
using a survey platform. The study involved 60 participants,
and a total of 10,500 votes were collected. We applied each
of the 5 methods of text-guided domain adaptation for 3D
generative models, including our own method, to adapt the
EG3D [2] generator to 7 text prompts, each converting a
human face to a style with a large domain gap from the

FFHQ [14] or AFHQ-cat [13, 3] domains, namely Horse’,
Cow’, Elephant’, Iguana’, Turtle’, Sesame street’, ‘Sponge-
Bob’. For each text prompt, we sampled 30 images and
a 3D shape from each generator, and placed the results of
each method side-by-side. To assist the participants in the
user study, we included screenshots of Google search pages
corresponding to each text prompt. A total of 60 people
completed the survey, providing 10,500 votes. We asked the
participants in the user study to rate the quality of the ren-
dered 2D images on a scale of 1 to 5. They were presented
with the following questions: (1) Do the rendered 2D images



Table S3. List of complete text prompts that correspond to each subclass prompt used for text-guided debiasing.

Superclasses Subclasses Subclasses prompts

Bear

Black Bear "a FHD photo of a face of a Black Bear"
Brown Bear "a FHD photo of a face of a Brown Bear"
Giant Panda "a FHD photo of a face of a Giant Panda"
Polar Bear "a FHD photo of a face of a Polar Bear"

Dog

Vizsla "a FHD photo of a face of a Vizsla"
Pug dog "a FHD photo of a face of a Pug dog"

German Shepherd "a FHD photo of a face of a German Shepherd"
Golden Retriever "a FHD photo of a face of a Golden Retriever"

Beagle "a FHD photo of a face of a Beagle"
Rottweiler "a FHD photo of a face of a Rottweiler"
Dachshund "a FHD photo of a face of a Dachshund"

Siberian Husky "a FHD photo of a face of a Siberian Husky"
Schnauzer "a FHD photo of a face of a Schnauzer"

Cocker Spaniel "a FHD photo of a face of a Cocker Spaniel"
Welsh Corgi "a FHD photo of a face of a Welsh Corgi"

Zootopia

Rabbit in Zootopia Style "a FHD photo of a Rabbit in Zootopia Style with big eyes"
Fox in Zootopia Style "a FHD photo of a Fox in Zootopia Style with big eyes"

Buffalo in Zootopia Style "a FHD photo of a Buffalo in Zootopia Style with big eyes"
Cheetah in Zootopia Style "a FHD photo of a Cheetah in Zootopia Style with big eyes"
Sheep in Zootopia Style "a FHD photo of a Sheep in Zootopia Style with big eyes"

Gazelle in Zootopia Style "a FHD photo of a Gazelle in Zootopia Style with big eyes"
Tiger in Zootopia Style "a FHD photo of a Tiger in Zootopia Style with big eyes"
Bear in Zootopia Style "a FHD photo of a Bear in Zootopia Style with big eyes"
Koala in Zootopia Style "a FHD photo of a Koala in Zootopia Style with big eyes"

3D animation characters

Toy Story "a FHD photo of a character in film ’Toy Story’ style"
Moana "a FHD photo of a character in film ’Moana’ style"

How to Train Your Dragon "a FHD photo of a character in film ’How to Train Your Dragon’ style"
Brave "a FHD photo of a character in film ’Brave’ style"
Coco "a FHD photo of a character in film ’Coco’ style"

Ratatouille "a FHD photo of a character in film ’Ratatouille’ style"
Rise of the Guardians "a FHD photo of a character in film ’Rise of the Guardians’ style"

Tangled "a FHD photo of a character in film ’Tangled’ style"
UP "a FHD photo of a character in film ’UP’ style"

Moana "a FHD photo of a character in film ’Moana’ style"

Human face

Kids "a FHD photo of a kids"
Teenagers "a FHD photo of a teenagers"

20s "a FHD photo of a person in their 20s"
30s "a FHD photo of a person in their 30s"
40s "a FHD photo of a person in their 40s"
50s "a FHD photo of a person in their 50s"
60s "a FHD photo of a person in their 60s"
70s "a FHD photo of a person in their 70s"
80s "a FHD photo of a person in their 80s"

accurately reflect the semantics of the target text? (text-2D
image correspondence), (2) Are the rendered 2D images re-
alistic? (photorealism), and (3) Are the rendered 2D images
diverse within the image group? (diversity). These questions
are similar to those used in [16]. Additionally, participants
were asked to rate the accuracy of text-correspondence and
the sense of depth and details of the 3D shapes on a scale
of 1 to 5, based on the following questions: (4) Does the
extracted 3D shape accurately reflect the semantics of the
target text? (text-3D shape correspondence), and (5) Do the

3D shapes have a great sense of depth and detail? (sense of
depth and details of 3D shapes). Finally, the mean score for
each method was then calculated.

E. Additional Results

E.1. Results of text-driven 3D domain adaptation

We present additional results of qualitative comparison
between our text-guided domain adaptation outcomes and
other baselines in Fig S2 and Fig S3. Our method empow-



ers the EG3D [2] model to generate multi-view consistent
images in a broad range of text-guided domains (animals,
characters) with high text-image correspondence, diversity
and excellent quality of 3D shape, while other baselines
don’t.

E.2. SD vs DGD vs PPD

Fig. S4 presents additional comparison results of text-
guided image-to-image translation and text-guided domain
adaptation, evaluated using Stable diffusion (SD)[28], the
depth-guided diffusion (DGD)[28], our pose-preserved dif-
fusion (PPD) models, and specialized-to-general (S-to-G).

PPD enables high pose-consistency and text-image cor-
respondence in image translation, which leads to successful
domain adaptation of the EG3D [2] 3D generator while pre-
serving 3D shapes. Furthermore, S-to-G sampling helps to
address the issue of detail bias.

E.3. Text-guided debiasing for human face images

Fig. S5 demonstrates that our debiasing method enables
the generation of a more agebalanced representation for
FFHQ images that bias towards individuals in their 20s and
30s without requirements of an- notated datasets or pre-
trained attribute classifiers.

F. Discussion
Limitation. We investigate that domain adaptation to non-
living objects, such as chairs and hamburgers, which lack
directional information, leads to a low level of text-image
correspondence as represented in Fig. S6. Our text-guided
domain adaptation process relies on the performance of text-
to-image diffusion models, which means that any limita-
tions of the chosen diffusion models are also present in our
pipeline. For this work, we have utilized both the Stable
Diffusion [28] and Depth-Guided Diffusion [28] models. As
stated in the Stable diffusion model card, the model has cer-
tain limitations that include the inability to achieve complete
photorealism, compositionality, proper face generation, and
the generation of images with languages other than English.
These limitations may have an impact on the performance of
our method.

Social impacts. Our novel PODIA-3D technique enables
the creation of high-quality 3D samples in text-guided do-
mains, even in cases where there are substantial gaps from
the source domain. Importantly, this can be achieved without
requiring any artistic skills. However, it is crucial to acknowl-
edge that this technology has the potential to be misused for
creating visuals that are upsetting or insulting. As per the
Stable diffusion model card [28], the model can be misused
in various ways such as creating inaccurate, hurtful, or offen-
sive depictions of individuals, and cultures. Therefore, we

strongly advise individuals to use our approach judiciously
and solely for its intended purposes.

G. List of Abbreviations
Table S4 describes the significance of various abbrevia-

tions, anacronyms and notations used throughout the papers.

Table S4. List of Abbreviations.

Abbreviation Meaning

SD, ϵSD
ϕ stable diffusion

DGD, ϵDGD
ϕ depth-guided diffusion

PPD, ϵPPD
ϕ pose-preserved diffusion

S-to-G specialized-to-general
T-I2I text-guided image-to-image translation

t diffusion timestep
tr return diffusion timestep
T total diffusion timesteps
xsrc, xsrc

0 source image
xsrc
t noised source image at diffusion timestep t

xtrg, xtrg
0 target image for training PPD

xtda target image for domain adaptation
yp-guar pose-guaranteed prompts
ytrg target text prompt for training PPD
ytda target text prompt for domain adaptation
ytda,A
i ith subclass texts for domain adaptation
Dtda pose-aware target dataset
DPPD PPD training data
Ddeb debiased target dataset
z random latent vectors for 3D generator
c random camera parameters for 3D generator
dsrc
i ith source depth map

qtrg
i ith target diffusion latent

G 3D generator
EV VQGAN encoder
DV VQGAN Decoder
N src the number of source images
N sub the number of subclasses
η PPD ratio
LADA ADA loss
Lden density regularization loss
X tda target domain
A attribute
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