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A. More Details about GSSA
Computational Complexity of GSSA. Given an input
X ∈ RH×W×D×C where H,W denote height and width,
D denotes the number of spectral bands, C denotes the fea-
tures channels, the computational complexity of each step
of GSSA is summarized in Tab. 1. Since the feature chan-
nels are typically larger than the number of spectral bands,
the asymptotic computational complexity of GSSA is dom-
inated by two linear transformations, i.e., Linear for V and
Post linear.

Step Complexity
Linear for V (H ×W ×D)× C2

Pooling for Q,K 2× (H ×W )× (D × C)
Compute attention matrix D ×D × C
Feature aggregation H ×W × C ×D ×D
Post linear (H ×W ×D)× C2

Total O((H ×W ×D)× C2)

Table 1: The computational complexity of GSSA. The over-
all complexity of GSSA is linear with respect to image size.

Fast Implementation. With the simplification of pixel-
wise attention via global average pooling, our GSSA can
be efficiently implemented with a depth-wise convolution
by treating the shared attention map as a convolution fil-
ter and swapping the spectral and channel dimensions. The
speed comparison is shown in Tab. 2, and it can be seen
that the Conv-based implementation is approximately 20%
faster than the naive Matmul-based one.
A.1. Comparison against other Attention.

Here, we provide a more detailed explanation regarding
the differences between our GSSA and existing channel or
spectral attention mechanisms. We highlight that our GSSA
is significantly different from previous attention mechanisms
in a variety aspects. Since GSSA performs attention along
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Implementation Runtime (s) PSNR
Matmul-based 0.60 41.82
Conv-based 0.47 41.82

Table 2: Speed of different implementations of GSSA. Our
Conv-based implementation reduces the running time with-
out harming the performance.

spectral rather than spatial dimensions, we here compare it
with four previous attention mechanisms that apply along
spectral or channel dimensions including:

Attention Method Task
MDTA Restormer [15] Color image restoration

MS-MSA MST [1] Spectral Reconstruction
GSA SST [9] HSI denoising

MGSA Hider [3] HSI denoising

Table 3: The competing attention mechanisms.

Fig. 1 illustrates the structures of the aforementioned
attention mechanisms. It is worth noting that all previ-
ous methods are essentially variants of MDTA proposed
in Restormer, whereas our GSSA is fundamentally distinct
from them. In the following, we will provide a detailed
explanation of the main differences between the previous
methods and our GSSA.

3D vs 2D Data Format. The first notable difference,
which can be easily confused with previous work, is that
our GSSA performs attention on the spectral dimension, i.e.,
the D dimension of a 5D data cube x ∈ RB×C×D×H×W .
In contrast, previous works, such as MST, and SST, even
though they refer to their attention mechanisms as spectral
attention, essentially apply channel attention along the C
dimension of a 4D data cube x ∈ RB×C×H×W , which is
the same as MDTA. Our 3D approach provides the flexi-
bility to handle HSIs with different bands within a single
model. Additionally, it achieves superior performance by
preserving the structures of different bands, i.e., each band
possesses its own feature set, and their relationship remains
unchanged across layers of the entire model.
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(e) Global Spectral self-Attention (GSA SST)
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(c) Spectral-wise Multi-head Self-Attention(MS-MSA MST)
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Figure 1: Comparison of different spectral/channel attention mechanisms. Our GSSA is significantly different from previous
attention mechanisms. We could observe MDTA and MGSA are almost identical; MS-MSA and GSA are almost identical.
Besides, MS-MSA and GSA are also basically simpler version of MDTA without depthwise convolution. Please refer to the
text for detailed explanation.

QKV Projection. The second key difference pertains to
the projections used for the query, key, and value. Conven-
tional attention mechanisms typically employ three linear
projections to project the input into query, key, and value.
This approach is utilized in all of the compared methods,
with the exception of our GSSA. Instead, our GSSA applies
linear projection solely for the value, which greatly simpli-
fies the design. By contrast, MDTA needs a extra 3x3 depth-
wise convolution after the linear projection. MGSA is iden-
tical to MDTA, except that it employs a 3D convolution.
MS-MSA and GSA are the same and solely utilize linear
projections, with the exception that MS-MSA employs an
additional mask attention specifically designed for spectral
reconstruction.

Pooling vs Reshape. The third difference is that our
GSSA uses global average pooling to obtain feature maps
for each band. This differs from previous methods that
adopt a reshape approach. Our method is significantly more
computationally efficient compared to previous approaches.
Previous methods reshape the Q, K, and V tensors from a
shape of H×W×C into HW×C, treating HW as the fea-
tures for each channel. This leads to a time complexity of
dot-product attention that is linear with respect to the image
size, i.e., D×D×HWC. In contrast, our GSSA approach
only has a constant time complexity D ×D × C, where D
denotes the number of bands.

Learnable Query. The fourth notable difference is the
introduction of the learnable query (LQ), which is moti-
vated by the fixed patterns of pixel values across different
bands. For example, the values of band 100 nm and 200 nm
are correlated. Our LQ helps to identify these correlations
and the alternative training strategy enables improvements

Model #P(Conv) #P(Total) PSNR SAM
Conv3D 0.43M 0.58M 41.62 0.052
Sep3D [4] 0.37M 0.53M 41.44 0.054
S3Conv-S 0.26M 0.42M 41.47 0.052
S3Conv-Seq 0.26M 0.42M 41.58 0.052
S3Conv 0.36M 0.52M 41.82 0.049

Table 4: Comparison of different S3Conv variants against
3D convolution and previous separable convolution. Our
S3Conv achieves significant better performance with fewer
parameters. Our methods are highlighted as gray . #P de-
notes the model parameters.

without any extra cost on the number of parameters, infer-
ence time, and the flexibility to handle HSIs with different
bands.

B. More Ablation Studies

To evaluate the effectiveness of the proposed compo-
nents, we conduct a series of experiments to explore the
different design choices for each part of our HSDT ar-
chitecture. Specifically, we compare the proposed blocks,
which include GSSA, S3Conv, and SM-FNN, by separately
replacing them with existing blocks that share the same
functionality, e.g., replacing S3Conv with Conv3D. We use
HSDT-M as the base model and evaluate the performance
of the different blocks by replacing them one at a time. For
blocks that cannot be incorporated into our 3D architectural
design of HSDT, such as 2D spectral attention [9], we report
the results obtained using their respective models.



Spatial-Spectral Separable Convolution. We evaluate
several variants of our S3Conv. The most straightforward
variant, S3Conv-S, sets the number of spatial convolutions
to 1, while the S3Conv variant that we adopt uses 2. An-
other variant, S3Conv-Seq, applies spatial and spectral con-
volutions sequentially instead of in parallel. As shown
in Table 4, both variants achieve comparable performance
with roughly 60% of the parameters used by Conv3D.
Our adopted version achieves a 0.2 dB PSNR gain with
only 80% of the parameters used by Conv3D. Notably, our
S3Conv approach significantly outperforms previous HSI
separable convolution approaches [4], achieving over 0.4
dB PSNR improvement with even fewer parameters.

Guided Spectral Self-Attention. We compare the pro-
posed GSSA approach with existing spectral fusion tech-
niques, including QRU [14], GSA [9], MS-MSA [1],
MDTA [15], and MGSA [3]. It is worth noting that although
GSA and MS-MSA are named as spectral attention, they are
essentially channel attentions derived from MDTA, as dis-
cussed earlier. Furthermore, GSA, MS-MSA, and MDTA
are all 2D attention approaches that work with 4D data for-
mats instead of the 5D data format used by HSDT. There-
fore, we report the results of their models when compared
with GSA, MS-MSA, and MDTA. For 3D spectral fusion
techniques such as QRU and MGSA, we report the results
of models that replace the GSSA of HSDT-M with them.
Table 5 presents the results of different attention mecha-
nisms. Our GSSA approach achieves the best results against
the other approaches. Notably, our GSSA outperforms pre-
vious GSA and MGSA approaches (which are also designed
for HSI denoising) by a large margin, demonstrating the ef-
fectiveness of our designs.

Model Params PSNR SAM
QRU [14] 0.57M 41.31 0.064
GSA [9] & MS-MSA [1] 4.14M 41.41 0.052
MDTA [15] 26.2M 41.03 0.062
MGSA [3] 0.50M 39.74 0.102
GSSA 0.52M 41.82 0.049

Table 5: Results of our GSSA in comparison with other
attention blocks. Our GSSA achieves a prominent improve-
ment against QRU by over 0.5 PSNR improvement, while
previous HSI denoising transformer with GSA only outper-
forms QRU by only 0.1 PSNR.

Self-Modulated Feed-Forward Network. The proposed
SM-Branch can be used without additional conventional
FFN. As shown in Tab. 6, the sole use of SM-Branch also
outperforms the conventional FFN, and the combination of
them both yields the best results with very few extra pa-
rameters. The GDFN [15] developed for RGB restoration
performs poorly and might be unsuitable for our model.

Model Params PSNR SAM
FFN 0.49M 41.67 0.050
GDFN [15] 0.49M 37.38 0.094
SM-Branch 0.45M 41.74 0.051
SM-FFN 0.52M 41.82 0.049

Table 6: Comparison of the existing FFN with our SM-FFN
and SM-Branch.

C. More Discussions
Visualization of S3Conv. To demonstrate the effective-
ness of our S3Conv. We provide a comparison of the fea-
tures map between S3Conv and conventional 3D convolu-
tion. As shown in Fig. 2, our S3Conv extracts more spatial
meaningful features.

(a) Input

(b) Ground Truth

(c) Feature maps produced by  Conv3D

(d) Feature maps produced by S3Conv

Figure 2: Comparison of the feature maps extracted by con-
ventional 3D convolution and our S3Conv.

Analysis of SM-FFN. The proposed SM-FFN is designed
for strengthening the features with higher activation via a
self-modulation operation. The improvement provided by
SM-FFN could be intuitively explained by the emphasis on
more informative regions that typically have higher activa-
tion. In the following, we provide some possible relations
between our SM-FFN and the SiLU [5] activation, which
might further imply why our SM-FFN works better. Specif-
ically, The SiLU activation is,

y = x⊙ sigmoid(x), (1)

where x and y are the input and output feature maps. It
can be observed that SiLU could be treated as a kind of
self-modulation where the modulation weight is computed
from the input itself. However, such homogeneous self-
modulation might be limited in expressive abilities. Instead,
our SM-FFN employs a heterogeneous self-modulation,

y = Linear1(x)⊙ sigmoid(Linear2(x)), (2)

where we adopt two extra linear projections to project in-
put x into two different spaces. This removes the restriction



of SiLU where the input x should simultaneously play two
roles of features and modulation weight. Thus, our SM-
FFN can obtain the advantages of SiLU, e.g., training sta-
bility and implicit regularization while maintaining more
representation capability. Consequently, it leads to better
performance than conventional FFN.

D. Extension as Plug-and-Play Prior

Considering the superior performance of our method on
the Gaussian denoising task, we demonstrate that HSDT
can be used a plug-and-play (PnP) prior [2] to solve gen-
eral HSI restoration tasks with proximal algorithms, e.g.,
ADMM and HQS.

Experimental Setup. We adopt PnP-ADMM [8] to ex-
tend our method to the tasks of compressive sensing,
and super-resolution. To meet the requirements of PnP
algorithms, i.e., Gaussian denoiser for continuous noise
strengths, we retrain our model, i.e., HSDT-M, with an ad-
ditional noise level map [16] on simulated Gaussian noise
ranged from 0 to 70. We run 40 iterations for compressive
sensing and 24 iterations for super-resolution. The hyper-
parameters of the algorithms are manually tuned to achieve
the best performance.

Compressive Sensing. We conduct the simulated experi-
ments on CASSI [13] system. Following [12], the shifting
random binary mask [11] is used in our simulation. We
provide the results on CAVE Toy, which is obtained from
[10]. We compare several recent methods, including DPH-
SIR [8], SCI-TV-FFDNet [12], DeSCI [10], and traditional
methods, i.e., 2DTV and 3DTV. The quantitative results are
shown in Tab. 1a. It can be seen that our method obtains the
best performance with over 1 dB improvement on PSNR.
Specifically, the improvement is purely obtained through
the superior denoising ability of our model, which means
our model can also be integrated into other more advanced
PnP methods for further improvement, e.g., [12].

Super-Resolution. We also provide results on the task of
HSI super-resolution. Following [8], we first blur the high-
resolution HSI via an 8×8 Gaussian blur kernel with σ = 3,
and then downsample the image to obtain the low-resolution
HSI. We provide the results on ICVL with a scale factor of
2 and 4. The competing methods include several recently
developed methods, e.g., SSPSR [7], Bi3DQRNN [6], and
DPHSIR [8] . As shown in Tab. 1b, our method achieves the
best performance. In particular, our method only needs the
pretrained Gaussian denoising model, which is the same as
[8]. The improvement against [8] comes from the better PnP
denoising prior, which further demonstrates the stronger de-
noising ability of our method.

E. More Implementation Details
Setup of the Learning Rate. In this part, we provide
more details about the multi-step learning rate scheduler
that we used for training our simulated Gaussian and com-
plex denoising models. Specifically, we use a multi-stage
training strategy to train the models for Gaussian noise and
complex noise. The learning rate is set up as shown in
Tab. 3a. We use learning rate warmup to gradually increase
the learning rate from 0 to 1 × 10−3 for the first epoch of
the second stage.

Details of the Simulated Complex Noise. We follow
[14] for constructing simulated complex noise. In details,
we consider the non-independent and non-identically dis-
tributed (non-i.i.d) Gaussian noise, stripe noise, deadline
noise, impulse noise, and the combination of the aforemen-
tioned noise (denoted as mixture noise). The details about
these five cases of noise are listed as follows,

• Non-i.i.d noise. The non-independent and non-
identically distributed Gaussian is added to every pixel of
each HSI. The noise strength is randomly selected from
10, 30, 50, and 70.

• Stripe noise. Stripe noise (5% to 15% percentages
of columns) is added to randomly selected one-third of
bands. Non-i.i.d. Gaussian noise is added to All bands.

• Deadline noise. Deadline noise is added to randomly se-
lected one-third of bands. Non-i.i.d. Gaussian noise is
added to All bands.

• Impulse noise. Impulse noise with intensity ranging from
10% to 70% is added to randomly selected one-third of
bands. Non-i.i.d. Gaussian noise is added to All bands.

• Mixture noise. Each band is randomly corrupted by at
least one kind of noise mentioned above.

System Configuration. In the main paper, we compare
the running time of different methods. All the comparisons
are performed with an Nvidia GeForce RTX 3090, and an
Intel(R) Core(TM) i9-10850K CPU @ 3.60GHz on Ubuntu
20.04.1 LTS. All the CNN-based methods are implemented
and tested with PyTorch 1.7.1. All the optimization-based
methods are implemented and tested with Matlab. We test
the running time on ICVL with an image size of 512× 512
by repeating the test 10 times and averaging the results.

F. Future work.
In this work, we propose a transformer architecture, i.e.,

HSDT for hyperspectral image denoising. We introduce
several effective and generalizable components to better ex-
plore the spatial-spectral and global spectral correlations of
HSI. Specifically, it is worthwhile to explore the applica-
tions of the proposed S3Conv and HSDT for more network
architectures and tasks. Furthermore, our learnable queries



Method PSNR SSIM
2DTV 25.26 0.863
3DTV 28.46 0.910
DeSCI [10] 26.62 0.912
SCI-TV-FFDNet [12] 29.35 0.925
DPHSIR [8] 30.56 0.945
PnP-HSDT (ours) 31.64 0.948

(a) Results on the task of compressive sensing.

2x 4x
Method PSNR SSIM PSNR SSIM
Bicubic 35.13 0.9575 35.12 0.954
SSPSR [7] 47.55 0.995 39.19 0.979
Bi-3DQRNN [6] 42.53 0.989 39.56 0.979
DPHSIR [8] 48.75 0.996 40.95 0.980
PnP-HSDT (ours) 49.76 0.996 41.56 0.982

(b) Results on the task of super-resolution.

Table 7: Experimental results of our PnP extension on the task of compressive sensing and super-resolution.

Stage 1 Gaussian Noise σ = 50

Epoch 0 - 20 20 - 30
LR 1× 10−3 1× 10−4

Stage 2 Gaussian Noise σ = 10, 30, 50, 70

Epoch 30 - 45 45 - 55 55 - 60 60 - 65 65 - 75 75 - 80
LR 1× 10−3 1× 10−4 5× 10−5 1× 10−5 5× 10−6 1× 10−6

Stage 3 Complex Noise
Epoch 80 - 90 90 - 95 95 - 100 100 - 105 105 - 110
LR 1× 10−3 5× 10−4 1× 10−4 5× 10−5 1× 10−5

(a) Our multi-step learning rate scheduler.

System Ubuntu 20.04.1 LTS
GPU Nvidia GeForce RTX 3090
CPU Intel(R) Core(TM) i9-10850K CPU
Framework PyTorch 1.7.1
Driver Cuda 11.2
Software Matlab 2020
Dataset ICVL
Image Size 512× 512

Repeat times 10

(b) System configuration for the speed test.

Table 8: More implementation details. (a) We adopt a multi-stage training strategy with the learning warmup setup for the first
epoch. (b) We provide the system configuration as the results of the speed test are strongly correlated with the configuration.

could also be extended to condition on some external infor-
mation for more explicit guidance. For example, we might
be able to inject the Gaussian noise strength into the net-
work with learnable queries, through an embedding layer.
This is helpful for a PnP Gaussian denoiser, where the noise
strength is known.

G. Broader Impacts
Our work has no ethical issues or broader impacts.
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