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Blur Model Radiance Fields N PSNR SSIM LPIPS Blur Model Radiance Fields N PSNR SSIM LPIPS

2D Kernel Neural
5 20.39 0.472 0.462

Cam. Traj. Neural
5 21.21 0.522 0.391

11 21.29 0.533 0.396 11 22.01 0.632 0.297
21 21.22 0.539 0.368 21 22.41 0.672 0.239

Blur Model Radiance Fields N PSNR SSIM LPIPS Blur Model Radiance Fields N PSNR SSIM LPIPS

2D Kernel Voxel
5 20.18 0.465 0.518

Cam. Traj. Voxel
5 23.24 0.613 0.411

11 22.12 0.556 0.442 11 26.42 0.755 0.304
21 21.57 0.537 0.437 21 26.96 0.753 0.328

Table 1: Ablation of the effectiveness of the proposed components on ”Factory” scene of synthetic dataset. N refers to the
number of sampling for blur reconstruction (kernel size). The 2D kernel-based blur model with neural radiance fields and
the kernel size N = 5 (left-top) is the original configuration and official implementation of DeblurNeRF [3]. Our camera
trajectory-based blur model and voxel-based radiance fields are decomposed to evaluate quantitative metrics for novel view
synthesis.

In the supplementary material, we provide more discus-
sions, comparison results, and other details that could not be
included in the main manuscript due to lack of space. The
contents are summarized below:
S1. Additional Ablation Study
S2. Limitations and Future Works
S3. Description for Supplementary Video
S4. Gradient to Camera Trajectory
S5. All comparison results

S1. Additional Ablation Study

We quantitatively compare the performance gain of the
proposed camera trajectory-based blur model to the 2D
kernel-based model of DeblurNeRF [3] in Tab. 1. In the
same radiance fields model and the number of sampling
N , our blur model outperforms the 2D kernel model with
significant margins. Since the challenging camera motion
consists of a complex trajectory with severe orientation
changes, 2D kernel estimation may suffer from enlarging
the kernel window size. In addition, the pixel-wise kernel
estimation is difficult to leverage the prior knowledge that
the camera is moving on a single trajectory and rays are
sequentially accumulated. Therefore, the deblurring per-
formance is less improved with the increasing kernel size
as reported in [3]. On the other hand, our model directly

formulates the motion blur in 6-degree of freedom (DOF)
camera poses, which accords with the physical motion blur
operation of the camera. The comparison by interchang-
ing radiance fields model shows that the camera-based blur
model is proper to optimize extreme motion blurred images
regardless of the architecture of radiance fields. Further-
more, the camera trajectory-based blur model shows better
compatibility with voxel-based radiance fields where PSNR
and SSIM are substantially improved only with the pro-
posed blur model.

S2. Limitations and Future Works

ExBluRF leverages the voxel-based radiance fields to
increase the number of sampling for blur reconstruction
with efficient computational cost. Regardless of deblur-
ring performance, the voxel-based radiance fields can fail
to render the rays that is out of the boundary of voxel
grids. In addition, the optimization of the proposed method
begins with the initial camera poses that are obtained
from COLMAP [7]. Even though the proposed camera
trajectory-based blur model has the ability to correct inac-
curate initial poses, the optimization cannot be started on
the scene where COLMAP fails to a total extent. These
limitations of ExBluRF lead to our future plans: 1) De-
formable sparse voxel-based radiance fields that are able to



extend the boundaries from the initial cube-shaped voxel
grids. 2) Pose-free end-to-end optimization of ExBluRF
from extreme motion blurred images.

S3. Description for Supplementary Video
We report a video that shows novel view synthesis. The

novel views are generated by spiral motion for the real
scenes, which is the most widely used visualization for
NeRF-based approaches. ExBluRF reconstructs startlingly
sharp 3D scenes from extreme motion blurred images with
much fewer 3D artifacts compared to DeblurNeRF [3].

S4. Gradient to Camera Trajectory
We extend an implementation of CUDA [5] kernel to

backpropagate the gradient to our camera trajectory-based
blur model. From the equation of trilinear interpolation
and differentiable volume rendering of voxel grid, we
derive the gradient from the photo-consistency loss to
the ray’s origin and direction. Note that, the ray origin
and direction are a function of camera pose in our model,
and the backpropagtion of this part is computed by the
automatic differentiation of PyTorch [6].

Gradients of trilinear interpolation. Let Xk = o+ sk ·d
denotes the 3D location of kth ray sample point with the
step size sk. The gradient of the kth sample point to the
ray’s orgin and direction are derived by:

∂Xk

∂o
= 1,

∂Xk

∂d
= sk.

(1)

The volume density σk and color ck of Xk is trilinear
interpolated from voxel grids Gσ(Xk) and Gsh(Xk). Let
vx,y,z
σ ∈ R and vx,y,z

sh ∈ R9 denote the interpolated volume
density and spherical harmonic (SH) coefficients of Xk, as
shown in Fig. 1. The gradient of voxel grids’ trilinear inter-
polation to Xk are:
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where ⌈·⌉ and ⌊·⌋ denote ceil and floor operation to desig-
nate the voxel value covering Xk, respectively. Note that,
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Figure 1: Visualization of trilinear interpolation from the
nearest voxel grids to the ray sample point.

the same differentiation is applied to ∂Gsh(Xk)
∂o ∈ R3×9 and

∂Gsh(Xk)
∂d ∈ R3×9 without loss of generality.

Gradients of volume rendering. Along the ray sample
points {Xk}Nk

k=1, the color of the ray Ĉ(r) is computed by
the differentiable volume rendering [2] as follows:

Ĉ(r) =

Nk∑
k=1

wk · ck,

where wk = exp(−
k−1∑
j=1

σjδj) · (1− exp(−σkδk)),

(3)

where δk is the distance between the (k−1)th and kth sam-
ple points. The color of lay is computed by the weighted
sum of {ck}Nk

k=1, where the weights {wk}Nk

k=1 are a function
of {σk = Gσ(Xk)}Nk

k=1. From Eq. 3, the gradient of wk to
{σk}Nk

k=1 is derived by:

∂wk

∂σj
=

{
−δj exp(−

∑k−1
j=1 σjδj)(1− exp(−σkδk)) j < k

δk exp(−
∑k−1

j=1 σjδj) exp(−σkδk) j = k

(4)
Additionally, the colors of ray sample points are computed
from a SH function that is {ck = S(d)⊺ · Gsh(Xk)}Nk

k=1.
Therefore, the gradients of ck to spherical harmonic func-
tion and coefficients are:

∂ck
S(d)

= Gsh(Xk),

∂ck
Gsh(Xk)

= S(d).

(5)

Gradients from Loss Function. Finally, the gradient from
the photo-consistency loss to the ray’s origin and directions
derived by chain rule as follows:

Lcolor = ||Ĉ(r)− Cgt(r)||22, (6)
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· ∂Ĉ(r)

∂o

=
∂Lcolor
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where ∂Lcolor

∂Ĉ(r)
= 2(Ĉ(r) − Cgt(r)) is derivative of mean

squared error (MSE). All the other terms are derived in
Sec. S4. Note that the SH function S(·) is only dependent
on the ray’s direction d. We implemented the described
differentiation in a CUDA [5] kernel for a single ray, and
the blur operation with camera trajectory is implemented in
auto-grad functions of PyTorch [6].

S5. All Comparison Results
We report all the quantitative and qualitative results com-

pared on our main manuscript in Tab. 2, 3, 4 and Fig. 2, 3, 4,
5. ExBluRF shows the best deblurring on qualitative results,
where the differences are larger in extremely blurred scenes.
However, for some real scenes, ExBluRF shows quanti-
tatively lower performance compared to DeblurNeRF [3].
As mentioned in Sec. S2, this is due to the limitation of
the voxel-based radiance fields that cannot generate colors
when the test view has unseen regions in training views.
This is applied equally to neural radiance fields, but neural
radiance fields fill these regions in an implicit manner even
though the colors are slightly inaccurate.
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Bench Camellia Dragon Jars
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Restormer [8]+NeRF 24.28 0.596 0.511 23.03 0.494 0.610 27.57 0.539 0.579 23.72 0.510 0.605
NAFNet [1]+NeRF 25.58 0.593 0.517 23.95 0.516 0.571 29.79 0.593 0.589 25.79 0.581 0.504
DeblurNeRF [3] 30.07 0.749 0.347 27.76 0.655 0.365 31.92 0.708 0.418 27.73 0.669 0.456
ExBluRF (Ours) 30.99 0.782 0.223 28.83 0.705 0.265 30.65 0.701 0.417 29.67 0.378 0.308

Jars2 Postbox Stone lantern Sunflowers Average
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Restormer [8]+NeRF 21.92 0.563 0.563 23.70 0.548 0.511 24.23 0.619 0.544 26.21 0.695 0.443 24.33 0.570 0.546
NAFNet [1]+NeRF 24.82 0.641 0.470 24.72 0.580 0.429 26.32 0.676 0.456 27.34 0.714 0.414 26.03 0.612 0.494
DeblurNeRF [3] 27.26 0.682 0.475 28.48 0.712 0.345 27.08 0.700 0.468 30.66 0.800 0.342 28.87 0.709 0.402
ExBluRF (Ours) 29.93 0.770 0.240 30.22 0.768 0.230 28.45 0.731 0.380 32.36 0.837 0.268 30.17 0.757 0.284

Table 2: Quantitative comparison of novel view synthesis on ExBlur dataset (proposed).

Cozyroom Factory Pool Tanabata Trolley Average
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Restormer [8]+NeRF 22.42 0.680 0.252 17.87 0.339 0.574 26.21 0.637 0.410 19.76 0.527 0.426 19.50 0.522 0.435 21.15 0.541 0.419
NAFNet [1]+NeRF 20.37 0.596 0.400 18.23 0.356 0.522 26.27 0.636 0.403 19.50 0.518 0.422 19.56 0.525 0.439 20.78 0.526 0.437
DeblurNeRF [3] 24.48 0.778 0.218 20.39 0.472 0.461 28.45 0.743 0.270 22.79 0.698 0.315 23.81 0.745 0.239 23.98 0.687 0.301
ExBluRF (Ours) 28.55 0.876 0.121 26.96 0.753 0.328 30.05 0.811 0.251 26.91 0.847 0.212 25.92 0.810 0.267 27.81 0.823 0.227

Table 3: Quantitative comparison of novel view synthesis on the synthetic dataset.

Ball Basket Buick Coffee Decoration
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Restormer [8]+NeRF 25.01 0.681 0.325 24.21 0.743 0.268 21.99 0.661 0.278 27.73 0.845 0.201 23.00 0.713 0.283
NAFNet [1]+NeRF 26.28 0.716 0.291 26.57 0.797 0.229 23.17 0.700 0.213 29.37 0.861 0.157 23.92 0.730 0.247
DeblurNeRF [3] 27.42 0.770 0.230 27.31 0.834 0.144 24.44 0.762 0.178 30.47 0.889 0.129 24.07 0.767 0.177
ExBluRF (Ours) 28.35 0.791 0.205 28.86 0.875 0.126 25.95 0.809 0.154 32.44 0.915 0.101 23.51 0.740 0.275

Girl Heron Parterre Puppet Stair Average
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Restormer [8]+NeRF 20.16 0.725 0.282 19.59 0.572 0.331 23.75 0.676 0.317 22.69 0.654 0.278 24.06 0.555 0.328 23.22 0.682 0.289
NAFNet [1]+NeRF 21.91 0.778 0.217 21.51 0.640 0.292 21.71 0.647 0.336 24.44 0.721 0.225 23.40 0.503 0.317 24.23 0.709 0.252
DeblurNeRF [3] 22.30 0.792 0.171 22.63 0.682 0.212 25.83 0.761 0.209 24.80 0.734 0.163 25.69 0.645 0.213 25.49 0.763 0.182
ExBluRF (Ours) 21.80 0.770 0.205 22.52 0.676 0.281 24.97 0.768 0.227 25.12 0.758 0.181 25.78 0.647 0.229 25.93 0.775 0.198

Table 4: Quantitative comparison of novel view synthesis on the real dataset of DeblurNeRF [3].



Blurry View Input Ground Truth Restormer+[4] NAFNet+[4] DeblurNeRF ExBluRF

Figure 2: Qualitative comparison of deblurring on ExBlur dataset (proposed).



Blurry View Input Ground Truth Restormer+[4] NAFNet+[4] DeblurNeRF ExBluRF

Figure 3: Qualitative comparison of deblurring on the synthetic dataset.



Blurry View Input Restormer+[4] NAFNet+[4] DeblurNeRF ExBluRF

Figure 4: Qualitative comparison of deblurring on the real dataset of DeblurNeRF [3].



Blurry View Input Restormer+[4] NAFNet+[4] DeblurNeRF ExBluRF

Figure 5: Qualitative comparison of deblurring on the real dataset of DeblurNeRF [3].


