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1. Category/Attribute/Affordance Selection

We choose affordances, categories, and attributes, con-
sidering their causal relations. Their word clouds are shown
in Fig. 1. The complete lists can be found in Suppl. Sec. 12.

(1) Affordance: To build a general and applicable
knowledge base, we collect 1,006 affordance candidates
from several widely-used action/affordance datasets: 957
from [4], 160 from [11], 146 from [3], 97 from [12], 41
from [45], 21 from [31] (with overlaps). We find that not all
affordances are in common use and some of them are dif-
ficult for visual recognition, e.g., accept (consider right
and proper). So each candidate is scored by 5 human ex-
perts from 0.0 to 5.0 according to generality and common-
ness. We keep 170 top-scored affordances in our base (134
from [4], 78 from [11], 127 from [3], 53 from [12], 13 from
[45], 11 from [31], with overlaps).

(2) Category: Considering the taxonomy (WordNet [9]),
we collect a pool with over 1,742 object categories from
previous datasets: 32 from [8], 28 from [33], 717 from
[42], 1,000 from [25] (with overlaps). Then we merge
the similar categories according to WordNet [9] and fil-
ter out the categories which are not common daily objects
(man, planet), unrelated to the above 170 affordances

*Corresponding author.

(skyscraper) or too uncommon (malleefowl). Fi-
nally, our database has 381 common object categories.
These object categories are divided into 12 super categories,
shown in Fig. 2.

(3) Attribute: We extract the attributes from several
large-scale attribute datasets: 64 from [8], 203 from [33],
66 from [42], 25 from [25], top 500 from [15]), and manu-
ally filter the 500 most frequent attributes. Five experts give
0 to 5 scores based on their relevance to human actions and
the selected 170 affordances to better explore the causal re-
lations between attributes and affordances. Some attributes
(cloudy, competitive) that are not useful for affor-
dance reasoning are discarded. Finally, 114 attributes are
kept, covering colors, deformations, supercategories, sur-
face, geometrical, and physical properties.

2. Annotation Details
2.1. Attribute Annotation

(1) Category-level attribute (A). Following [32], to
avoid bias, annotators are given category-attribute pairs
(category names, not images). They propose a 0-3 score
according to the category concept in their minds (0: No, 1:
Normally No, 2: Normally Yes, 3: Yes). Each pair is an-
notated by three annotators and takes the plurality as the A
label. If the range of 3 proposals exceeds 1, another three
annotators will re-annotate this pair until achieving consen-
sus. We binarize the annotations (0: No, 1: Yes) with a
threshold of 2 and get a category-level attribute matrix MA

([381, 114]).
(2) Instance-level attribute (α). Two annotators label

each pair with 0 (No) and 1 (Yes). If they give different la-
bels, this pair will be handed over to another two annotators
until meeting consensus.

2.2. Affordance Annotation

(1) Category-level affordance B. Following [4], the an-
notators are given category-affordance pairs. The pairs are
annotated in four bins (0-3) and normalized (same as A) to
describe the possibility of an affordance in a category. Each
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(a) Category (b) Attribute (c) Affordance
Figure 1: Word clouds of object categories, attributes, and affordance (by positive frequencies in OCL).
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Figure 2: Super-categories of objects in OCL.

pair is annotated by three annotators and makes consensus
the same as A. The 0-3 scores are binarized (1: Yes, 0: No)
with a threshold of 2. The final category-level affordance
matrix MB is [381, 170].

(2) Instance-level affordance β is annotated for every
instance with the help of object states [14]. As B is de-
termined by common states, objects in specific states may
have different affordances from B, e.g., we cannot board
a flying plane. As the instances in the same state should
have similar β (all rotten apples cannot be eaten),
six experts first conclude the states. The experts scan all
instances of each category and use their knowledge of af-
fordance to define all the existing states. Then all 186 K
instances are dispatched to the concluded states via crowd-
sourcing. If some instances do not belong to any prede-
fined states, they will be returned to the experts to add more
states. In total, 1,376 states are defined, and each category
has 3.6 states on average. Next, β is annotated for each
state. Given a state-affordance pair and example images,
two annotators mark it with 0 (No) and 1 (Yes). The results
are combined in the same way as α. Thus, each instance
would have a state and the corresponding β. An annotator
would recheck each instance together with its state and β

labels to ensure the quality. If its state is inaccurate or the
state β labels are unsuitable, this annotator would correct
them.

2.3. Causal Relation Annotation

(1) Filtering. As exhaustive annotation is arduous, we
only annotated existing rules without ambiguity. Starting
from the [114,170] matrix of α-β classes, we ask three ex-
perts to vote on the causal relation of each class. They scan
all instances to answer whether the relationship exists in
any case. That is, we just annotate the least pairs with the
largest possibility to be casually related. Some causal pairs
may be excluded. In detail, for each of the 114×170 α-β
pairs, we attach 10 samples for reference and 3 experts vote
yes/no/not sure. We take the majority vote and the
not sure and controversial pairs are rechecked. The not
sure and no pairs are removed, and so do the ambiguous
pairs. The pairs we selected are checked carefully to ensure
the causalities and we only evaluate models on them. Thus,
the missed causal pairs or non-causal pairs would not affect
the results. Finally, we obtain about 10% α-β classes as
candidates. The left 90% pairs may hold value and we will
mine new rules with LLMs in future work, especially from
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Figure 3: A running example of dataset construction.
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Figure 4: A more complex causal graph of our knowledge
base. A,B,O are the object category and category-level
attribute and affordance. I is the object appearance, α, β
are the instance-level attribute and affordance. Note that
“or” indicates that the arcs between A,B, α, β, I, α, and
I, β indicate that either A ← B or A → B (the others are
similar) is considering in the setting.

ambiguous pairs.

(2) Instance-level causality: we also adopt object states
as a reference. For each state-α-β triplet, two annotators are
asked whether the specific attribute is the direct and unam-
biguous cause of this affordance in this state and gives their
binary answer. We use the same method in annotating β
to combine results and assign state-level labels to instances.
Next, for all instances of a state, an expert decides whether
the state-level relations are reasonable for each instance in
specific contexts and correct the inaccurate ones. Finally,
we obtain about 2 M instance-α-β triplets of causal rela-
tions.

2.4. A Running Example of Dataset Construction.

A running example is shown in Fig. 3 to show the pro-
cess of annotations clearly.

3. Causal Graph
In this section, we first briefly introduce the causal graph

model and causal intervention. Then we introduce the de-
tails of the causal graph our knowledge base can support.
Then, we detail the implementation of the causal graphs
used by different methods.

3.1. Basics of Causal Inference and Causal Graph

𝑍

𝑋 𝑌

Intervention on X 𝑍

𝑋 𝑌

Figure 5: An example of the causal graph and causal inter-
vention. We study the causal relation X → Y while con-
founder Z exists and brings bias. After the intervention on
variable X , the poisonous relation Z → X is eliminated.

A causal graph is a DAG that describes the causal rela-
tions between multiple factors. Each directed edge points
from the “cause” to its “effect”, e.g. in Fig. 5, node X is the
cause of node Y . Under the scenario that causal variables
and causal graphs are known, causal inference studies how
to infer the strength of causal edges given observations, or
infer the outcomes given some of the causal variable values.

However, the causal relation in the real world is sophisti-
cated. The causal relation that we observed may have been
polluted by spurious variables. For example, let X in Fig. 5
be ice cream sales and Y be drownings, one may observe
that more ice cream sales lead to more drownings and in-
fer that they are causally related. Actually, the observed
relation is due to another factor Z: weather temperature.
These variables are called confounders, which is the com-
mon cause of two causal variables that we are studying, e.g.



in the left graph in Fig. 5, Z is a confounder when we focus
on the causal edge X → Y .

In causal inference, confounders should be eliminated to
avoid biases on causal learning, by applying intervention
on the cause variables (e.g. X in our example) to “control”
its distribution to block the effect of confounder. Traditional
scientific research on causality adopts Randomized Con-
trolled Trial (RCT) to completely remove the confounder,
but it is not applicable when we only have observational
data. Pearl. [34] et al. propose do-calculus to systemati-
cally analyze the causal graph and alleviate the confounder
bias in a probabilistic view. In the simple case in Fig. 5, the
confounder Z can be eliminated with Back-door Adjust-
ment:

P (Y |do(X)) =
∑
z

P (Y |X,Z = z)P (Z = z), (1)

where z is the specific value of the random variable Z. The
causal graph of our OCRN also meets the back-door crite-
rion so we apply the back-door adjustment to alleviate bias
from the confounder O.

3.2. Causal Graph of Our Knowledge Base

A more complicated causal graph considering more arcs
between nodes is shown in Fig. 4. The causal relations be-
tween nodes or arcs in Fig. 4 are determined as follows:

Firstly, we introduce two kinds of special arcs.
O → A, O → B (dotted arcs): in OCL, A and B are de-

fined as the category-level annotations. Given O, A, and B
are strictly determined. In Fig. 4, we use two dotted arrows
from O to A,B respectively to indicate this deterministic
relation to distinguish them from the other causal relations.

O → I , A → α, B → β (blue arcs): we see the
category-level O, A, and B are direct causes of instance-
level I , α, and β during the concept instantiation according
to OCL definition. Because the visual representation I and
properties α, β of an instance are derived from the concept-
level categorical ones. The reversed arcs O ← I , A ← α,
B ← β mean that O, A, B are the aggregations of instances
and would be marginally affected by one specific instance,
thus we do not include these arcs here for clarity.

Next, we illustrate the regular causal arcs as follows.
I → α, I → β: the recognition process of α and β.

As I indicates the physical noumenon, it is the source of
semantic and functional properties and decides/causes α, β.

α → I , β → I: the generation of visual pattern from
attribute or affordance descriptions and can be utilized in
image generation/manipulation tasks [13].

A ← B or A → B, α ← β or α → β: the causal
direction between attribute and affordance can be reversed
sometimes. The arc from α to β is evident, e.g., a broken
cup is not useable. Sometimes, the reverse arc causal
effect from β to α also exists, e.g., an eatable banana
would not be unripe.

3.3. Causal Graph Implementation

In this work, we mainly study the recognition and rea-
soning of attribute and affordance for robotics and embod-
ied AI, hence we remove the two arcs corresponding to im-
age generation α → I , β → I . Due to the deterministic
relation between O, A, and B, we can simplify the three
nodes to a single node O′ (Fig. 6).

Different methods can exploit different causal paths. We
propose diverse baselines to implement different causal sub-
graphs, including the subgraphs with α → β, and α ← β.
The causal graphs of some baselines are shown in Fig. 7.

The ablation experiment with arc α → β and α ← β
shows that the causal effect of α → β is stronger than
the alternative in our datasets. Besides, from the aspect of
embodied AI and robotics, affordance is more important in
practical applications like object manipulation, so we focus
more on affordance recognition and regard β inference as
our main goal. Therefore, in OCRN and some other base-
lines, we keep the arc α→ β. And in causal reasoning, we
focus on the evaluation of α → β too. The causal graph of
OCRN is shown in Fig. 8.

4. OCL Characteristics
4.1. Object Box Size

We visualize the distribution of normalized object box
size in Fig. 9, where the box width and height are normal-
ized by the width and height of the whole image. It shows
that most objects in our knowledge base are small objects,
providing abundant regional information.

4.2. Annotator Information

Annotators’ age, major, and education degree are pre-
sented in Fig. 10, 11, and 12.

4.3. Matrix Samples

The category-level attribute and affordance (A,B) matri-
ces are detailed in Fig. 13, 14 as heatmaps, and the cells with
dark color indicate positive samples. For example, ice
cream is cold while clock is not natural, cake can
be eaten while eraser can not be cooked. These are
in line with our common sense.

4.4. State Distribution

Before annotating the affordances, we first define the ob-
ject states for all object categories and annotate the state af-
fordances. In total, we define 1,376 states for 381 object
categories. And Fig. 15 shows the state distribution per ob-
ject category.

4.5. Attribute-Affordance Relation

We analyze the instance-level attribute-affordance rela-
tions in our knowledge base under three criteria. (1) At-
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Figure 7: Causal graphs of the baselines.

tribute Conditioned Affordance Probability. It is com-
puted as P (β|α) to estimate affordance probability given
an attribute. The range is [0,1]. (2) Attribute-Affordance
Correlation. For all instances in our dataset, we evalu-
ate the label correlation of each attribute-affordance pair,
whose scale is in [-1,1]. (3) Attribute-Affordance Causal-
ity. Starting with the annotated cause-effect (α− β) labels,
we count for how many times each attribute-affordance pair
appear in our dataset and normalize the value by the max-
imum occurrences, leading to a value in the range [0,1].
It should be mentioned that we only annotate whether an
attribute-affordance pair has explicit and key causality, but

the detailed effect (positive or negative) should be referred
to instance labels.

We visualize the samples of attribute-affordance relation
matrices in Fig. 16, 17, 18 and observe some interesting
properties of them. They reveal some common relations,
such as what is between tasty and eat. However, some of
the criteria suffer from data bias. For the condition matrix
in Fig. 16, it only cares about cases with positive attribute
labels, which is not good in highlighting the negative rela-
tions, e.g., the relation between natural and produce. For
the former two matrices in Fig. 16, 17, they all point out
the relation between tasty and pick, since most tasty objects
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Figure 8: Causal graph of OCRN.
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Figure 9: Distribution of normalized object box width (left)
and height (right).

are pickable food. This finding is simply misled by the data
bias but violates the causal graph (inference from attribute
to object category, then affordance). Last, the matrix ob-
tained from our causal annotation in Fig. 18 is more sparse
and clear of causality.

4.6. Unified Object Representation

To compare the difference between attribute-only and
attribute-affordance representations, we cluster the object
instances of two similar animals (zebra and horse) with
their attribute labels and attribute-affordance labels, respec-
tively. The results are shown in Fig. 19 via t-SNE [29]. With

both attribute and affordance labels, zebra and horse can be
better separated than attribute only. And attribute and affor-
dance together can differentiate specific states well, such as
riding, pulling car, etc.

4.7. Difference between Category- and Instance-
Level Labels

We analyze the differences between category-level A,B
labels and instance-level α, β labels. For each object
category, we compute the average ratio of changed at-
tribute/affordance classes during each instantiation from A
to α or from B to β. The top 50 categories with the most
significant differences between A and α as well as B and
β are reported respectively in Fig. 20. We find that affor-
dance labels change more dramatically than attribute labels
during instantiations. This is because each attribute change
may affect several affordances, e.g., when a common book
becomes burning, we can neither open nor read it.

4.8. Attribute-Affordance Causal Relations

We annotate all object instances’ causal relations of fil-
tered [αp, βq] pairs. In total, 1,085 [αp, βq] pairs are cho-
sen for the causality annotation, and over 2 M instance-α-
β triplets are annotated. In the ITE evaluation (main text
Sec. 5), we report the mean AP of top-300 [αp, βq] pairs
to avoid the biased influence of very rare [αp, βq] pairs that
include less than 35 object instances.

4.9. Data Partitioning

For the OCL task, our knowledge base is split into the
train, val, and test sets. The statistical details of the split are
listed in Tab. 1. The image number ratio of the three sets is
nearly 4:1:0.6, and the instance ratio is around 5:1:1.

Set Image Object Instance Object category
Train 56,916 135,148 381
Val 14,446 25,176 221
Test 9,101 25,617 221
Val+Test 23,547 50,793 221
All 80,463 185,941 381

Table 1: Detailed data split of our knowledge base.

4.10. Images and Instances

Some additional data samples of our knowledge base
are shown in Fig. 21, 22a, 22b, 23, 24, and 25, including
samples of diverse object categories with various bounding
box distributions, different attributes and affordances, and
human-labeled object states and obvious causal relations.
We also show the counts of object categories, attributes, and
affordances in instance/image in Fig. 26, 27, and 28.
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4.11. More Statistics of Annotation

We divide A,B, α, β, causality annotation into multi-
ple finer-grained small sets in our pipeline. Generally, we
have 13, 19, 124, 140, and 85 annotator sets (381 total) for
A,B, α, β, and causality annotation respectively. We as-
sign each small set to 2 annotators. However, considering
the controversial situations introduced, part of the annota-
tion are confused cases based on their results. In the whole
process, 9.6% of A, 7.7% of B, 5.2% of α, 7.9% of β, and
13.7% of causality are confusing and re-assigned to addi-
tional annotators. These indeterminable ones will be sent
to two extra annotators until agreement. The quality of the
dataset is guaranteed by a low confusion ratio and multiple
refining stages.

4.12. Potential Bias

We have considered the bias issue in the construction of
our dataset. (1) In our dataset, the existing datasets (Im-
ageNet [6], COCO [23], aPY [8], SUN [42]) are open-

sourced datasets and the images collected from the Internet
are publicly accessible too. The dataset is constructed for
only non-commercial purposes. We will only provide the
URLs of these images to avoid copyright infringement. (2)
During image collection, we choose images with general
objects and are particularly careful with the image selection
to avoid unsuitable content, private images, or implicit bi-
ases. (3) During annotation, the annotators cover different
genders, ages, and fields of expertise to avoid potential an-
notation biases. And they are all informed on how we will
use the annotations in our research.

5. ITE Metric Details

ITE (Individual Treatment Effect (ITE) [36]) is to
measure whether a model infers affordance with proper at-
tention to the causality-related attribute. That said, when
removing the attribute, the model is expected to have large
prediction difference further away from the ground truth.

We detail some settings in our ITE metric. For the ITE
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score:

SITE =

{
max(∆β̂q, 0), βq = 1,

max(−∆β̂q, 0), βq = 0,
(2)

where

∆β̂q = β̂q|do(αp) − β̂q|do(ZZαp) == β̂q − β̂q|do(ZZαp), (3)

we want the moving direction of affordance prediction af-
ter the intervention to be correct according to the GT affor-
dance labels (βq). Concretely, for an instance with the la-
beled causal relation between [αp, βq], if the label βq = 1,
we expect the prediction change ∆β̂q to be larger, indicat-
ing the elimination of αp leads to a drop of predicted prob-
ability. Because without the effect of αp, the probability of
βq should be contrary to the fact (βq = 1). Similarly, if
βq = 0, we expect ∆β̂q to be smaller, i.e. the elimination of
αp leads to an increase of predicted probability. The design
of the ITE loss also follows the setting of this ITE score.

In α-β-ITE, the ITE score is multiplied by two factors of
recognition performance:

P (α̂p = αp) =

{
α̂p, αp = 1,

1− α̂p, αp = 0,

P (β̂q = βq) =

{
β̂q, βq = 1,

1− β̂q, βq = 0.

(4)

And the overall metric is:

Sα-β-ITE = SITEP (α̂p = αp)P (β̂q = βq) (5)

The factors measure the correctness of attributes and affor-
dances. Hence a model achieves a high Sα-β-ITE only if
it correctly predicts attribute and affordance and learns the
causal relation between them.

In our experiments, for attribute/affordance recognition
only, all methods adopt labels to learn knowledge from the
data. In the evaluation of causal relation, only the “w/
LITE” models adopt the causal relation labels. We hope
the models can automatically learn to mine and learn the in-
trinsic causalities. Thus, we design the ITE to evaluate this



40 20 0 20 40

40

20

0

20

40

horse
zebra

(a) Attribute Labels.

40 20 0 20 40

60

40

20

0

20

40

zebra
riding horse
pulling car horse
other horse

(b) Attribute-Affordance Labels.

Figure 19: Clustering using attribute and attribute-
affordance labels.

ability. Similar to our OCRN, some works [39, 37, 38] also
try to marry supervised deep learning and causal inference.

6. Baseline Details

We introduce the details of all baselines here:
Fold I. No arc between α and β.
(1) Direct Mapping from Visual Feature (DM-V):

feeding fI into MLP-Sigmoids to predict Pα, Pβ . Each
α and β class owns customized MLP followed by Layer-
Norm [1] to generate class-specific features and share the
same MLP-Sigmoid in classification.

(2) DM from Linguistic Representation (DM-L): re-
placing the input representation fI of DM-V with linguistic
feature fL, which is the expectation of Bert [7] of category
names w.r.t P (Oi|I).

(3) Multi-Modality (MM): mapping fI to the seman-
tic space via minimizing the distance to its fL. The multi-
modal aligned fI is fed to an MLP-Sigmoids to predict
Pα, Pβ .

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) Difference between A and α labels.

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

(b) Difference between B and β labels.

Figure 20: Top-50 object categories with the largest ratio of
the difference between category- and instance-level labels.

(4) Linguistic Correlation (LingCorr): measuring the
correlation between object and α/β classes via their Bert [7]
cosine similarity. Pα, Pβ are given by multiplying P (O|I)
to correlation matrices.

(5) Kernelized Probabilistic Matrix Factorization
(KPMF) [44]: calculating the Softmax normalized cosine
similarity between each testing instance and all training
samples as weights. Then Pα or Pβ is generated as the
weighted sum of GT α or β of training samples.

(6) A&B Lookup: returning the expectation of
category-level attribute or affordance vectors Ai, Bi w.r.t
P (Oi|I). In detail, seen category probabilities are obtained
from GT prior MA,MB . Unseen category probabilities are
voted by the top 3 most similar seen categories according
to the cosine similarity of category Word2Vec [30] vectors.
Then, we generate category-level attribute and affordance
matrices M ′

A,M
′
B given the GT prior (seen) and similarity-

based probabilities (unseen). Finally, we multiply P (O|I)
with M ′

A,M
′
B to predict PA, PB and assign them to Pα, Pβ

respectively.
(7) Hierarchical Mapping (HMa): first mapping fI to

category-level attribute or affordance space by an MLP su-
pervised by GT A or B. Then the mapped features are fed
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to an MLP-Sigmoids to predict Pα or Pβ .
Fold II. Directed arc from β to α.
(8) DM from β to α (DM-β → α): training a β clas-

sifier with fI same with DM-V, but using the concatenated
representation of affordance as fβ to train the α classifier.

(9) DM from β and I to α (DM-βI → α): training a β
classifier with fI same with DM-V, but using the concate-
nated representation of attributes fβ and objects fI to train
the α classifier.

Fold III. Directed arc from α to β.
(10) DM from α to β (DM-α→ β): training an α clas-

sifier with fI same with DM-V, but using the concatenated
representation of attributes as fα to train the β classifier.

(11) DM from α and I to β (DM-αI → β): training an
α classifier with fI same with DM-V, but using the concate-

nated representation of attributes fα and objects fI to train
the β classifier.

(12) Ngram [24]: adopting Ngram to retrieve the rele-
vance between α and β and generating an association ma-
trix Mα−β . Then we multiply DM predicted Pα with Mα−β

to estimate Pβ .
(13) Markov Logic Network (MLN-GT) [35]: adopt-

ing MLN to model the α−β relations following [45]. After
training on OCL, we infer β with GT α to estimate its per-
formance upper bound.

(14) Instantiation with attention (Attention): feeding
[fα, fI ] to an MLP-Sigmoid to generate attentions and pre-
dicting Pβ by multiplying the attentions with PB .

We operate baselines with a directed arc from α to β
(Fold III) to perform ITE. The ITE calculation needs fea-
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Figure 22: More OCL samples of attributes and affordances.

ture zero-masking to eliminate the effect of specific at-
tributes [38]. These methods (DM-At, DM-AtO, Attention,
OCRN) follow the same ITE calculation (feature masking).
Two unique cases are Ngram and MLN-GT. Ngram uses at-
tribute probabilities to infer affordance. Thus, we random-
ize the specific attribute probabilities for Ngram to operate
the ITE calculation. And MLN-GT must use GT attribute
labels to distinguish the “positive” and “negative” causes
and then reason out the effect affordance. Thus, in ITE, we
directly eliminate its corresponding attribute input.

7. Detailed Result Analysis
7.1. Detailed Attribute and Affordance Perfor-

mances

We compute and analyze the performance (AP) of
OCRN on each attribute or affordance class in Fig. 29 and
Fig. 30, which suggest that visually abstract concepts like
fake are more difficult to model than concrete ones like

metal, breakable. The performance of attribute classes
is lower than affordance classes. This is mainly because the
attributes have more diversity. Thus the positive instances
of each attribute class are less than the affordance class.

7.2. Visualization of ITE Result

In Fig. 31, we show the correct instance proportions (%)
of OCRN and Attention after ITE. (a) randomly chosen
causal pairs [αp, βq] with ground truth βq = 1, expecting
β̂q > β̂q|do(ZZαp). (b) randomly chosen causal pairs [αp, βq]

with ground truth βq = 0, expecting β̂q < β̂q|do(ZZαp). The
higher proportions indicate that OCRN performs better on
ITE.

7.3. Attribute and Affordance Recognition Given
Detected Boxes

Though OCL is a high-level concept learning task with
object boxes as inputs, we can also consider object detec-
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tion in evaluation for practical applications. We adopt Swin
Transformer (Swin) [28] as the detector. It is pretrained on
COCO [23] and finetuned on the OCL train set with GT
boxes of 381 categories. On the OCL test set, it achieves
22.9 AP50 on object detection. Subsequently, it will pro-
vide detected box bo for all models in inference. We can
consider the detection effect in the attribute and affordance
recognition metric to build a more strict criterion. Namely,

all false positive detections (IoU<0.3 with referring to GT
boxes) as the false positives of α and β recognition too.
Moreover, ITE calculation needs to construct the counter-
factual of an object instance. If the inaccurately detected
object box shifts according to the GT box, it is difficult to
know whether the counterfactual comes from the attribute
masking or visual content change, using the corresponding
attribute-affordance causal relation labels of this GT box.
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Figure 25: More OCL samples in same category but different states.
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Figure 26: Counts of object categories.

Thus, considering the unique property of causal inference
different from common recognition, here we do not report
the ITE score. Tab. 2 shows the results given detected boxes.
Due to the more strict criterion and detection quality, the
performances of all methods degrade greatly. But OCRN

still holds the superiority on two tracks.

7.4. OCL-Based Image Retrieval

We visualize the OCL reasoning performance by retriev-
ing the top-score instances with OCRN. Some results are
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Figure 28: Counts of affordance classes.

shown in Fig. 32 and Fig. 33. The model can correctly re-
trieve the related images, especially on some common con-
cepts e.g., columnar, sit.

8. Application on Human-Object Interaction
(HOI) Detection

To further verify the generalization ability, we apply
OCL to Human-Object Interaction (HOI) detection [20, 3,
16] and help HOI methods boost their performances. HOI
detection recently attracts a lot of attention and makes pro-
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Method α β
DM-V 7.4 11.0
DM-L 4.6 9.1
MM 5.4 9.9
LingCorr 1.7 5.6
KPMF 6.4 10.5
A&B-Lookup 4.1 5.8
HMa 6.5 10.9
DM-At 6.8 10.5
DM-AtO 6.6 10.8
Ngram 5.1 10.2
MLN-GT - -
Attention 5.5 10.1
OCRN 7.9 11.3

Table 2: Attribute and affordance recognition results given
detected boxes from Swin Transformer [28].

gresses [26, 27, 41] thanks to the success of deep learning
and large-scale HOI datasets [3, 12, 19, 18].

HOI depicts the actions performed upon objects by hu-
mans. Usually, an object has multi-affordance, i.e., a per-
son can perform different actions upon it. But in an image,
just one or several actions/affordances are usually happen-
ing/activated. Without object knowledge, previous meth-
ods [21, 10, 17] can find the activated affordances from hun-
dreds of actions [3]. For example, for each human-object
pair in HICO-DET [3], a model has to select one or several
actions from the defined 116 actions. With OCL, things are
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Figure 31: ITE given different [αp, βq].

different. OCL covers many actions, so we can use OCRN
to infer Pβ of an object to narrow the solution space. Thus,
we propose two ways:

(1) OCL Filtering: We use Pβ to narrow the action
space with a threshold γ and generate P γ

β . Affordances with
probabilities higher than γ are kept and others are set to zero
(γ = 0.5). Then, the HOI model only needs to predict in
a narrowed action space. In practice, we multiply the pre-
diction PHOI from HOI model with P γ

β element-wisely to
obtain the final prediction P ′

HOI = PHOI ∗ P γ
β .

(2) Human-as-Probe: Another more straightforward
way is to predict HOI via OCL directly. We treat the hu-
man paired with the object as a probe. Assuming the hu-
man feature is fh and human-object spatial configuration
feature is fsp (from [21, 10]). As Pβ indicates all possible
affordances, the ongoing actions can be seen as the instan-
tiation of Pβ , i.e., they are activated by the “probe” fh and
fsp. So we use fh and fsp to generate attention Ah+sp via
MLP-Sigmoid. Then we operate Pβ ∗Ah+sp and late fusion
to get the final prediction P ′

HOI = (Pβ∗Ah+sp+PHOI)/2.
Concretely, we use OCRN to enhance HOI detection

models (iCAN [10], TIN [21], IDN [17]) on HICO-
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DET [3]. As OCL merely contains 15 object categories in
HICO-DET [3], the rest 65 object categories are unseen.
We embed OCRN into three HOI models according to OCL
filtering and Human-as-Probe, and the public model check-
points of [10, 21, 17] are used.

The results are shown in Tab. 3. With OCL filtering,
iCAN [10], TIN [21], and IDN [17] achieve a gain of mAP
by 0.65%, 0.90%, and 0.77% respectively. The Human-as-
Probe is more suitable for HOI detection and contributes
a performance boost of 1.50%, 1.46%, and 0.98% to three
models. These strongly verify the efficacy and generaliza-
tion ability of OCL.

9. Comparison on Imbalance Learning
9.1. Debiasing Learning

The motivation of the OCRN is to follow the prior
knowledge of the three levels of objects with a deep

Method Full Rare Non-Rare
iCAN 14.84 10.45 16.15
iCAN+Filtering 15.49 8.76 17.50
iCAN+Probe 16.34 11.66 17.74
TIN 17.03 13.42 18.11
TIN+Filtering 17.93 13.79 19.17
TIN+Probe 18.49 15.02 19.58
IDN 23.36 22.47 23.63
IDN+Filtering 24.13 23.74 24.24
IDN+Probe 24.34 24.03 24.43

Table 3: Results of HOI detection (using detected object
boxes).

Model Test Inference α Amp. β Amp.
OCRN argmaxyP (y|x) 0.127 0.112
DM-V + Joint ND-way Softmax argmaxy maxd Pte(y, d|x) 0.151 0.158
DM-V + Joint ND-way Softmax argmaxy

∑
d Pte(y, d|x) 0.148 0.154

DM-V + N-way classifier per domain argmaxyPte(y|d∗, x) 0.135 0.112
DM-V + N-way classifier per domain argmaxy

∑
d s(y, d, x) 0.147 0.145

Table 4: Comparison with debiasing models.

learning-based causal graph model, to pursue the object un-
derstanding beyond the common direct mapping from pix-
els to labels, and to avoid the bias estimation such as in
the Simpson’s paradox [34]. Thus, we use intervention to
deconfound the confounder category and exclusive the pos-
sible spurious bias and correlation imported bias from im-
balanced object categories. Overall, we propose our OCRN
in a causal inference perspective instead of the pure clas-
sification viewpoint, which also suits our causal graphical
model well. Similar cases are also proposed in recent works
like [39, 37, 38]. Moreover, to better compare our method
with the common debiasing methods, we further conduct
the experiments as follows.

We regard α, β recognition as multiple independent bi-
nary classification tasks and implement some methods in-
troduced in [40] on our strong baseline DM-V to reduce bias
from object categories. We use mean bias amplification
(Amp) in [43] as bias evaluation metric: small Amp means
model suffers less from data category bias. The test results
are shown in Tab. 5. The proposed OCRN has compara-
ble or smaller bias amplification than the variants of DM-V
since our model follows the causal graph and exploits the
tools of causal inference, while most methods for category
bias are from the view of classification.

To verify the debiasing of OCRN, we compare the model
bias of OCRN w/ or w/o deconfounding. The bias of cat-
egory O upon an attribute α is measured following [43], by
b(O,α) = c(O,α)/

∑
α′ c(O,α′). When measuring data

bias, c(O,α) is the number of co-occurrence of O and α in
OCL, and when it comes to model bias, c(O,α) is the sum
of probabilities that O are predicted positive with α. The
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bias of β is measured in the same manner. Fig. 34 and 35
show some examples of the biases of training data and mod-
els, indicating that OCRN deconfounding effectively pre-
vents the model from bias toward the train set.

9.2. Long-tailed Learning

Besides the debiasing learning techniques, we also ap-
ply longtailed learning methods on our baseline method
DM-α→ β for comparison, including class-balanced sam-
pling [2] and focal loss [22]. The models with additional
re-balancing modules suffer from minor accuracy degrada-
tion, mainly for OCL is long-tailed on object class while we
infer α, β, so the gap minimizes the effect of long-tailed
learning.

Method α β
DM-α→ β 28.7% 52.6%
DM-α→ β+Class balance sampling [2] 27.3% 52.1%
DM-α→ β+Focal loss [22] 27.6% 51.2%

Table 5: Comparison with debiasing models.

10. Discussion about States

We did not use object states in our model because there
is also a compositional zero-shot problem and object-state
pairs, i.e., there can be unseen states in real-world data.
Differently, affordances are more general. The models ex-
plicitly incorporating object states will fail to generalize to
these zero-shot states and it adds to the object category bias.
In experiments, the state supervision during training would
indeed slightly improve the affordance recognition perfor-
mance, since instances in the same state lie in a tight cluster
in affordance label space. But this will hurt the ITE perfor-
mance greatly.

11. Discussion about Causality and Causal
Graph

Annotating causality in the real world is extremely dif-
ficult. In data annotation, we have met numerous ambi-
guities and difficulties to confirm the “right” causal rela-
tions. To address these challenges, we follow the following
principles: (1) Firstly, we only emphasize clear and strong
causal relations via crowdsourcing, but omit the vague ones.
(2) Second, we take an object affordance-centric view-
point to look at the possible causal relations. (3) We would
rather discard than condone the controversial situation in
the annotation. (4) We only focus on the simple relations
between one attribute and one affordance, instead of the
very complex compositions of multiple attributes and affor-
dances which are almost impossible to annotate. Therefore,
we finally find that we can label a very small percent-
age of all arcs with the whole causal graph consisting of
so many nodes (category, attributes, affordances, contexts,
etc.) while keeping the quality.

Our causal graph follows the human priors from our ex-
perts and crowdsourcing annotators. Some previous works
also follow this before designing the method, such as [45].
From the viewpoint of causal discovery [34, 37, 38, 39],
the above arcs (e.g., the inverted arc from attribute to cate-
gory in the causal graph directed acyclic graph, DAG) are
indeed possible. However, here, we mainly study the ob-
ject concept learning problem, especially attribute and af-
fordance learning for intelligent robots and embodied AI.
Thus, from the perspective of affordance learning, we think
the arcs from category to attribute and affordance are more
vital and meaningful to us.

Causality can also be confused with enabling condition.
In OCL, the affordance of an object indicates what human
can do to/with it. In this case, “fresh” causes “eat-able”
(rather than causes “eat” action). As causality is dis-
cussed in the view of embodied agents, this rule can hold.
In modern causal inference models like structured causal



models (SCM), causality and enabling conditions are not
strictly distinguished. As stated by Cheng et al. [5], causes
and enabling conditions hold the same logical relation to
the effect in those terms and the methods that explain their
distinction come from the subject judgment of humans. The
distinction can be explained based on the normality of po-
tential factors, or considering the existing assumption of
the inquirer. They proposed an approach by measuring the
covariation between potential factors to the effect over a
set of questions. So in SCM, both will be represented as
nodes and involved in causal mechanisms. OCL follows
the “open” setting: affordance is a subjective property of
the object, so all reasons given by humans/robots (includ-
ing enabling conditions) are regarded as causal factors.

12. Detailed Lists
The detailed object categories, attributes, and af-

fordances are listed on our website: https://
mvig-rhos.com/ocl.
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