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Supplementary Material

A. Overview

In the supplemental document, we introduce the details
of our torso-nerf with Adaptive Head Encoding, model ar-
chitecture details, user study details, additional experiments
and analysis, ethical considerations, and the discussion of
this work.

B. Torso-NeRF Details

We combine the proposed Adaptive Pose Encoding and
the 2D deformable neural field from RAD-NeRF [14] to
render the torso part. As described in Section 3.4 of the
main paper, we init three points in the 3D canonical space
with trainable homogeneous coordinates:

Xkeys = (xkeys,ykeys, zkeys,1)
T ∈ R4×3. (1)

For each frame, we form the pose of head P as:

P =

(
R t
0 1

)
(2)

and apply it to transform the key points:

X̂keys = P−1Xkeys. (3)

where X̂keys is the transformed coordinates. Then we con-
vert X̂keys to the ordinary coordinates and project them
onto the plane Z = 1 to calculate their 2D coordinates
X̄keys ∈ R2×3 on the imaging plane, where

X̄keys(i, j) = γ · X̂keys(i, j)/ẑkeys(j), (4)

and γ is the coefficient learned by the network.
The overview of the torso-NeRF is shown in Figure 1.

We use X̄keys to condition the 2D deformable neural field
[14] for rendering the pixel-wise color and alpha of the torso
at the image pixel coordinate xpixel. Specifically, to render
the pixel at xpixel ∈ R2 on the image , we firstly feed X̄keys

and the pixel coordinate xpixel into an MLP, and add the
output ∆x to xpixel for a 2D deformation. The deformed
coordinate is then encoded by the 2D multiresolution hash
encoder Ht. Finally, another MLP is used to calculate the
pixel-wise transparency α and color ct.

The implicit function of the torso-NeRF can be formu-

Methods AD-NeRF RAD-NeRF ER-NeRF

Stability 1.33 2.89 3.89
Image Quality 2.67 3.33 4.00

Table 1. User Study of Torso Quality. The rating is of scale 1-5,
the higher the better.

lated as:

FT : (xpixel, X̄keys;Ht) → (ct, α) (5)

During training, the coordinates Xkey can be optimized
to gain the ability in representing the implicit relationship
between the poses of the head and torso. And due to only
linear transformations involved during forwarding, the torso
quality is improved without a significant increase in the
amount of calculation.

User Study. We also conduct a user study to evaluate the
synthesized torso part. We invite the attendees to rate the
stability and image quality of generated torsos in the head
reconstruction setting. To compare our method, we selected
AD-NeRF [6] and RAD-NeRF [14] as the baselines since
they are the only two NeRF-based methods that can syn-
thesize the torso part and have released their codes. The
results are reported in Table 1. We can observe that our ER-
NeRF achieves the best both on Stability and Image Qual-
ity by just adding a straightforward encoding step without
any deep neural network, which demonstrates the high effi-
ciency of our Adaptive Pose Encoding.

C. Architecture Details
Audio Feature Extractor. In the experiments, we use the
pretrained DeepSpeech [7] model to extract raw audio fea-
tures. We then process these features with the same audio
attention module as previous NeRF-based works [6, 11, 14],
except for changing the output dimension from 64 to 32.

Region Attention Module. The speech audio branch uti-
lizes an attention vector MLP with 2 layers and 64 hidden
dimensions. Conversely, the eye-blinking branch employs a
2-layer MLP with only 16 hidden dimensions.



Figure 1. Overview of the Torso-NeRF.

Grid Instant-NGP Tri-Hash

Frontal Side 1 Side 2 Total

Collision 835186 138345 31041 26048 195434

Table 2. The number of hash collisions occurring in one feature
lookup step on a single grid resolution.

Tri-plane Hash Representation. The 2D hash encoders
are configured to have 14 resolution levels and a single entry
assigned to each level, with a range of multiple resolutions
from 64 to 512. The density MLP decoder contains 3 layers,
and the color MLP decoder contains 2 layers, both of which
have 64 hidden dimensions.

D. User Study Details

The study involves 18 participants with an age range of
20-30 years old. To facilitate more accurate judgments, we
combine all generated videos and the ground truth into a
single high-resolution video. This allows participants to ob-
serve all motions simultaneously. To ensure fairness in the
comparison process, we assign a number to each generated
result instead of identifying them by their method. Partic-
ipants are asked to evaluate the three perspectives of the
generated portraits: (1) Lip-sync Accuracy; (2) Video Re-
alness; (3) Image Quality. To evaluate the torso-NeRF, we
additionally invite the attendees to judge two aspects of the
synthesized torso: (1) Stability; (2) Image Quality.

E. Tri-Plane Hash Representation

Complexity of Hash Collision Here we give the proof of
the complexity O(R2 + 2RN) in Section 3.2 for our Tri-
Hash Representation: 1) For the frontal plane, the projected
area is linearly correlated to R2, thus the collision is O(R2);
2) The ideal projected area for the other two side planes
is (λR)R, where λ is an adjustment. But notice only the
nearest N points can be sampled at some side areas due to
occlusion, so λR is partly correlated to N , and the collision
is O(λR2 +RN). Overall, O(R2 + 2RN) is given.

The Number of Hash Collisions. Here we give the eval-
uation during one lookup step to directly verify our effect
on hash collision reduction. The hashtable size is set to 214

and divided by 3 for each planar grid in our Tri-Hash, with
the grid resolution of 512, the max in the experiment. Ad-
justments of 1/8 and 1/4 are applied due to bilinear inter-
polation. The point coordinates are scaled up to encour-
age uniform hashing. In practice, the benefit of our method
would be more obvious, since indeed the coordinates can-
not be uniformly separated among the hash table and so the
overlapping of grids becomes more serious.

F. Additional Experiments
LPIPS Finetune. It may seem counter-intuitive that the
overall LPIPS [16] finetuning is less effective for RAD-
NeRF [14] but has a significant impact on the high-
frequency details of our ER-NeRF despite having a smaller
model size. This phenomenon is likely due to differences
in training difficulty. Our ablation study shows that even
a simplified architecture with only a 3D hash grid back-
bone and an audio feature dimension of 32 can repro-
duce fine details. On the other hand, RAD-NeRF uses a
more complex architecture with an additional hash grid and
higher-dimensional audio features to improve lip-sync per-
formance, which increases the training difficulty and makes
the network harder to optimize. As a result, the LPIPS fine-
tuning has a weaker impact on its rendering quality. The
variations in LPIPS loss during training are illustrated in
Figure 2.

Region Attention for Eye Blinking. We perform an abla-
tion study on the eye-blinking branch of the Region Atten-
tion Module in isolation. When we skip the region attention
mechanism and directly concatenate the AU45 with the in-
put of the MLP decoder, some unnatural facial movements
appear, like jittering and unreasonable lip movements with
eye blinking (Figure 3). This might be due to the module’s
inability to accurately identify the regional impact of eye
blinking and thus learns an incorrect motion mapping with
other facial regions. The results indicate that our Region



(a) Obama (b) May

Figure 2. The validation LPIPS loss on our Obama dataset and
May dataset with different architectures. A complex network is
much harder to be optimized by the LPIPS finetune and reproduce
fine details.

Figure 3. Ablation on Region Attention for Eye Blinking. Some
unnatural facial movements appear when directly concatenating
the AU45 with the input to control eye blinking. After applying
the proposed region attention mechanism, the robustness has been
improved.

Attention Module can help decouple different semantic mo-
tions and improve robustness.

G. Comparison with GeneFace and DFRF

In table 3 and 4, we have also compared our ER-NeRF
with two current SOTA methods GeneFace [15] and DFRF
[11], both of which are designed for different settings, no-
tably. Meanwhile, since the code of GeneFace is released
too close to the submission deadline, it was not taken into
the baselines in the main paper. We consider the compar-
isons not entirely fair for them, and the results are just for
reference.

H. Additional Qualitative Comparison

We show some additional generated key frames on the
Testset A under the lip synchronization setting with high
resolution in Fig. 4. In this setting, we only synthesize
the head part. The results show that our ER-NeRF can out-
perform most baselines in image quality while retaining a
high lip-sync accuracy. We strongly recommend watching

Methods PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ AUE ↓ Sync ↑
DFRF 30.74 0.0881 13.32 3.553 2.538 4.385
GeneFace 30.24 0.0817 11.16 3.496 2.854 5.403

ER-NeRF (Ours) 33.10 0.0291 10.42 2.740 1.629 5.708

Table 3. DFRF and GeneFace at the head reconstruction setting.

Methods A: LMD ↓ A: Sync ↑ B: LMD ↓ B: Sync ↑
DFRF 6.551 4.854 8.126 4.127
GeneFace 5.465 5.849 7.237 6.275

ER-NeRF (Ours) 6.254 6.242 8.150 6.830

Table 4. DFRF and GeneFace at the lip synchronization setting.

our supplemental video for better visualization and more re-
sults.

I. Ethics Considerations

Our proposed ER-NeRF synthesizes high-fidelity talk-
ing portraits with accurate lip-audio synchronization. The
generated portrait video is highly realistic and difficult for
people to distinguish fake from real. We hope it can facili-
tate a wide range of applications, such as digital humans,
video production, and human-computer interaction assis-
tance. On the other hand, however, such techniques may be
misused for malicious purposes and make harm. It’s signif-
icant to tell the users whether a video is real or fake. Recent
studies have already achieved success in deepfake detection
for face swapping, reenactment and other generating videos
[5, 17, 3, 2, 12, 4], but it remains a challenge to discrimi-
nate synthesized high-fidelity portraits from recent NeRF-
based methods. Besides sharing our generated results to
the deepfake detection communication and to help develop
more powerful deepfake detectors, we also provide some
possible perspectives to fight against the malicious use of
talking portrait synthesis:

• Protect real portrait speech videos. Since current
NeRF-based techniques rely heavily on specific training
videos, protection for these real videos is valid to prevent
misuse. For example, we can add digital watermarks to
the portrait part which can be easily detected even in the
generated fake videos.

• Limit the use of deepfake techniques. Nowadays, little
cost of deepfakes leads to an unconstrained use of these
techniques. The negative impact of the malicious use of
deepfakes can be amplified when they are unintentionally
created and shared by the public on social media plat-
forms. Even though the creators may have no malicious
intent, the spread of these deepfakes can still have harm-
ful consequences. We suggest the laws should state how
to properly make use of these face-generation techniques.



Figure 4. Additional Qualitative Comparisons. We show the synthesized head results of the lip synchronization setting on Testset A.
(a) Ground truth; (b) AD-NeRF [6]; (c) SynObama [13]; (d) RAD-NeRF [14]; (e) ER-NeRF (ours); (f) LSP [9]; (g) SSP-NeRF [8]; (h)
Wav2Lip [10]; (i) PC-AVS [18].



On the other hand, the public should also be aware of the
potential harm of deepfakes and treat them cautiously.

J. Limitation and Future Work
Compare to the one-shot methods like Wav2Lip [10], our

method has some advantages in results quality and reso-
lution, however, needs per-scene training when generating
new target portraits. Enabling the generative ability may be
the target we work for.

Besides, the proposed method has two main limitations.
Firstly, our method still encounters a challenge with the
small scale of a single training video, leading to a weak
lip-audio synchronization with out-of-domain audio, such
as some cross-lingual speech or singing voice. Currently,
we rely on a pretrained speech recognition model to extract
audio features. We have noticed that some recent works
[15, 1] employed a pretrained model to enhance their gen-
eralizability. In future work, we will consider incorporating
priors from large audiovisual datasets to address this lim-
itation. Secondly, although our method has improved the
robustness and image quality of the torso part, there remain
some blurry regions. We analyze this may be caused by un-
certain movements and the form of representation itself. In
future work, we will focus on addressing this issue.
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