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Section I introduces the details of the annotation cost ex-
periment. Section II discusses the results of the color dis-
tance change experiment. Section III provides more tar-
get probability maps (TPMs) on different SIRST datasets.
Section IV presents additional ablation studies on the other
three SIRST datasets. More quantitative results on differ-
ent SIRST datasets are shown in Section V. Moreover, we
developed an offline webpage to summarize the pipeline,
methods, and visual results of our paper. Readers can refer
to the attached files for more details.

I. Details of Annotation Cost Experiment
In Section 3.1 of the main body of our paper, we report

the annotation cost of four common weakly-supervised and
one fully-supervised approaches. Here, we describe how
we used the labeling software to generate the various kind-
s of annotations in Figure II. The detailed annotation cost
statistics are shown in Figure I.

As shown in Figure II, we use Adobe Photoshop 2019
as labeling software. Randomly-selected 100 images from
the NUAA-SIRST [1] and NUDT-SIRST [2] datasets are
used for annotation cost evaluation. Averages annotation
cost from 3 trails are reported in Figure I. Given an input
image, we first localize the small targets and then zoom in
the targets located small region, as shown in Figure II (a)-
(c). Then, multiple types of label are placed in the target
region by corresponding labelling manners. For single point
annotation (shown in Figure II (d)), we place the single-
point label on the center of the target. For multiple points
annotation (shown in Figure II (e)), the first point is also
placed on the center of the target. Then, the remaining 4
points are randomly placed in the four corners of the target.
Scribble annotation is a curve that passes through the central
region of the target (shown in Figure II (f)). Bounding boxes
annotation (shown in Figure II (g)) is a box that fits tightly
to the target. Pixel level annotation (shown in Figure II (h))
is achieved by labelling every pixels in the image.
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Figure I. Annotation time cost on the (a) NUAA-SIRST and (b)
NUDT-SIRST datasets. We take 1.4, 3.1, 5.1, 6.5, and 11.2 sec-
onds per target to generate single point, multiple points, scribbles,
bounding boxes, and pixel-level annotations, respectively. Aver-
ages annotation cost from 3 trails are reported.

Figure I reports the annotation cost of five kinds of an-
notations by re-labelling the NUAA-SIRST [1] and NUDT-
SIRST [2] datasets. We take 1.4, 3.1, 5.1, 6.5, and 11.2
seconds per target to generate single point, multiple points,
scribbles, bounding boxes, and pixel-level annotations, re-
spectively. Single-point supervision can reduce about 87%
annotation time as compared to the pixel-level annotation
approach.

II. Details of Color Distance Experiment
In Section 3.3 of the main paper, we provide qualitative

results of color distance change experiment on Figure 6 (b).
Here, we provide more details for this experiment.

As described in the main body, we want to verify the
opinion that random noise helps to increase the distance be-
tween background and target region. In this way, the mis-
clustered target regions can be pushed away from the false
clustering center and thus return back to the true cluster-
ing center. To support this opinion, we first calculated three
kinds of color distance (i.e., maximum color distance with
false clustering center, minimum color distance with false
clustering center, color distance with true clustering cen-
ter) and drew three kinds of curves (i.e., upper boundary of
∆(Dc(CF ,Mpred)), lower boundary of ∆(Dc(CF ,Mpred)),

1



(a) Randomly Selected images (b) Load Image (c) Zoom in Target Region (d) Single Point Label 

(e) Multiple Points Label (f) Scribbles Label (g) Bounding Box Label (h) Pixel Level Label 

Figure II. Detailed process of achieving four common weakly-supervised and one fully-supervised labels. Adobe Photoshop 2019 is used
as labelling software.

and ∆(Dc(CT ,Mpred))) with the increasing of noise inten-
sity in Figure 6 (b).

We can observe from Figure 6 (b) that, with the increase
of noise intensity, the color distance between edge areas and
true clustering center (i.e., ∆(Dc(CT ,Mpred))) is always s-
maller than the lower boundary of ∆(Dc(CF ,Mpred)). This
demonstrates that random noise with proper intensity has
higher probability of pushing the target away from the false
clustering center and helping them return back to the true
clustering center. Note that, the above curves are drawn by
averaging the results from 10 trails. Although random noise
cannot always introduce true guidance for misclustered re-
gions in each experiment, the average result of multiple ex-
periments presents a robust trend that random noise can ef-
fective guide the misclustered regions to return back to the
true clustering center.

III. MCLC Process on Different Datasets
Here, we introduce more visual TPMs during Monte

Carlo linear clustering (MCLC) process in Figure III. Clus-
tering results at iteration 1, 2, 20, 100 of MCLC process
and the denseCRF refined pseudo masks on the NUAA-
SIRST [1], IRSTD-1k [4], NUDT-SIRST [2], and NUDT-
SIRST-sea [3] datasets are shown in Figure III. Although
easily producing inaccurate results at the beginning of clus-
tering (e.g., iteration number less than 20), MCLC can grad-
ually recover a reliable clustering result.

IV. Ablation Study on Different Datasets
In Section 4.3 of the main body of our paper, some ab-

lation studies (e.g., Type and Intensity of Noise, Number
of Clustering Center, Influence of Labeling Position Devia-
tion ) were conducted on the NUAA-SIRST dataset [1] on-
ly. Here, we present the experimental results on the oth-
er datasets (IRSTD-1k [4], NUDT-SIRST [2], and NUDT-
SIRST-sea [3]) to verify the generalization our method.

Figure IV (a1)-(d1) show the change trend of IoU with

respect to different noise intensity under three types of com-
mon noise (i.e., salt, pepper, and Gaussian) on four datasets.
With the increase of noise intensity, the IoU of MCLC with
denseCRF under salt and noise increases rapidly at the be-
ginning. After that, excessive intensity value reduces the
saliency of target region and thus results in the decrease of
IoU . Moreover, Gaussian noise causes huge performance
decrease under any intensity. Similar change trend can also
be found on the other datasets (IRSTD-1k, NUDT-SIRST,
and NUDT-SIRST-sea). These results disclose the fact that
proper type and intensity of noise are essential to MCLC on
all datasets.

Figure IV (a2)-(d2) report the IoU of the results gener-
ated by MCLC with denseCRF, MCLC with fixed thresh-
old, and LCA under different number of clustering center.
It can be observed that the IoU firstly shows a rapid in-
creasing trend with the increase number of clustering cen-
ter. Afterwards, the quality of TPM gradually decreas-
es when the number of clustering center further increas-
es. Similar change trend can be also found on the oth-
er datasets (IRSTD-1k, NUDT-SIRST, and NUDT-SIRST-
sea). The above results demonstrate that inappropriate num-
ber of clustering center will result in over-small or over-
large area of initial search region, and thus introduce nega-
tive effect on MCLC for all datasets.

As shown in Figures IV (a3)-(d3), with the increase of la-
bel position deviation, IoU value gradually decreases, but
still maintains at a high level even with five pixels devia-
tion. Similar change trend can be also found on the oth-
er datasets (IRSTD-1k, NUDT-SIRST, and NUDT-SIRST-
sea). That is because, our proposed Monte Carlo regulariza-
tion method enables the model to seek for robustness repre-
sentation from repetitive Monte Carlo clustering.

V. Quantitative Results on Different Datasets
Figures V and VI show the qualitative results of our

single-point supervised method and the compared fully-
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Figure III. Examples of target probability map and the corresponding refined pseudo masks during the MCLC process on four datasets.



(a) Results on the NUAA-SIRST Dataset

(b) Results on the IRSTD-1k Dataset

(c) Results on the NUDT Dataset

(d) Results on the NUDT-SIRST-sea Dataset
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Figure IV. IoU scores achieved by our method with (a1)-(d1) different types and intensity of additional noise, (a2)-(d2) different number
of clustering center, and (a3)-(d3) different label position deviation on four SIRST datasets.
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Figure V. Qualitative results achieved by different SIRST detection methods on the NUAA-SIRST and IRSTD-1k datasets under (b) point-
level supervision, (c) pixel-level supervision. For better visualization, the target area is enlarged in the right-top corner. The correctly
detected target, false alarm, and miss detection areas are highlighted by red, yellow, and green dotted circles, respectively. Our MCLC
enables the network to achieve comparable performance to the fully-supervised results with only single-point annotation.



NUDT-SIRST-sea
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Figure VI. Qualitative results achieved by different SIRST detection methods on the NUDT-SIRST and NUDT-SIRST-sea datasets under
(b) point-level supervision, (c) pixel-level supervision. For better visualization, the target area is enlarged in the right-top corner. The
correctly detected target, false alarm, and miss detection areas are highlighted by red, yellow, and green dotted circles, respectively. Our
MCLC enables the network to achieve comparable performance to the fully-supervised results with only single-point annotation.



supervised methods on different SIRST datasets [1–4].
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