
Multi-granularity Interaction Simulation for Unsupervised
Interactive Segmentation

Appendix

A. Limitations
In this work, we discard the previous annotation-intensive object-oriented interaction simulation and propose an annotation-

free alternation named Multi-granularity Interaction Simulation (MIS) to train an interactive segmentation model in an un-
supervised manner. Although we explore the possibility and promise of unsupervised interactive segmentation and achieve
inspiring results, the proposed method still has some limitations: (1) Due to the down-sampling, inaccuracy, and domain gap
of the pre-trained feature extractor, the region proposals may sometimes contain noise or inconsistent semantics, which hurts
the model training and further leads to a performance gap with supervised methods, especially on hard datasets (e.g., SBD
and DAVIS). (2) The trained segmentation model shares the same limitation as the supervised counterpart. That is, the model
may fail in some challenging scenarios such as very thin and elongated objects.

B. Additional Ablation Study
Connectivity. In bottom-up merging (Algorithm 1), we introduce the connectivity constraint to restrict merges to only
occur locally. Here we discuss the effectiveness of it by ablation. As shown in Table I, the performance of using or not
using connectivity constraint is not much different, but using connectivity constraints greatly improves the speed (3.39 ×
improvement) and make the pre-processing more efficient than the previous DINO-based unsupervised segmentation methods
(Appendix E). This is because we reduce the search space for the minimum cost from each pair of patches or regions to the
adjacent patches or regions based on the prior on images.

Connectivity Speed
(image/s) ↑

GrabCut Berkeley SBD DAVIS
NoC@85 ↓ NoC@90 ↓ NoC@85 ↓ NoC@90 ↓ NoC@85 ↓ NoC@90 ↓ NoC@85 ↓ NoC@90 ↓

✘ 1.10 2.12 2.52 3.08 4.69 6.88 9.46 5.63 7.56
✓ 3.73 (↑ 3.39 ×) 1.94 (↓ 0.18) 2.32 (↓ 0.20) 3.09 (↑ 0.01) 4.58 (↓ 0.11) 6.91 (↑ 0.03) 9.51 (↑ 1.36) 6.33 (↑ 0.70) 8.44 (↑ 0.88)

Table I. Ablation on connectivity constraint.

Feature Extractor. We compare the impact of different pretrained weights, ViT variants, and patch size on the performance
of our method and show the results in Table II. Similar to previous findings [19, 11], we find that the model size has little
effect on the quality of dense features. On the other hand, our method is robust to different pretrained weights such as
MoCov3 [4] and DINOv2 [12].

Method Model
GrabCut Berkeley SBD DAVIS

NoC@85 ↓ NoC@90 ↓ NoC@85 ↓ NoC@90 ↓ NoC@85 ↓ NoC@90 ↓ NoC@85 ↓ NoC@90 ↓

DINO [3]

ViT-S/8 1.94 2.32 3.09 4.58 6.91 9.51 6.33 8.44
ViT-S/16 2.00 2.52 3.17 5.24 7.02 9.71 6.51 9.10
ViT-B/8 2.14 2.58 3.52 5.10 7.05 9.70 6.52 8.74
ViT-B/16 2.02 2.34 3.01 4.81 6.88 9.55 6.27 8.63

MoCov3 [4] ViT-S/16 1.88 2.34 3.01 4.71 6.96 9.60 6.09 8.26
DINOv2 [12] ViT-S/14 2.00 2.80 3.61 5.64 6.73 9.39 6.76 10.26

Table II. Ablation on pre-trained feature extractor.



C. Cross-domain Evaluation
In this section, we verify the cross-domain generalization of our unsupervised method by transferring the model trained on

SBD [7] to two segmentation datasets in medical domain (BraTS [2] and OAIZIB [1]). The quantitative results are shown in
Figure I and Table III by the IoU (Intersection over Union)-NoC (Number of Clicks) curve, NoC at different IoU thresholds
(NoC@80, NoC@85), and IoU at different number of clicks (IoU@5, IoU@10).

Our MIS achieves comparable and in some cases better performance than its supervised counterpart (SimpleClick) without
manual annotation. Unlike supervised methods which overfit the instance-level annotations, our model learns interactions at
multiple granularities and is better generalizable to different domains. Therefore it can achieve significantly higher IoU in
the first few clicks on datasets in medical domain.
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Figure I. Comparison of IoU-NoC curve on BraTS and OAIZIB dataset. Our unsupervised method generalizes better compared to the
supervised counterpart, which is reflected in relying on fewer clicks to achieve a higher IoU.

Method Backbone
BraTS OAIZIB

NoC@80 ↓ NoC@85 ↓ IoU@5 ↑ IoU@10 ↑ NoC@80 ↓ NoC@85 ↓ IoU@5 ↑ IoU@10 ↑
SimpleClick [9] ViT-B 7.75 9.63 63.08 84.79 15.82 18.29 31.78 57.92
MIS (Ours) ViT-B 6.55 9.11 77.70 84.90 15.90 18.48 47.87 66.31

Table III. Quantitative results on BraTS and OAIZIB dataset.

D. Further Description of Ward’s Method
In MIS, we use Ward’s method [20] to implement the bottom-up merging process. As described in Section 3.1, Ward’s

method measures the cost of merging by the increment in the total within-cluster sum of squared error (SSE). During the
merging process, the center µ and the size s of each region are recorded. Initially, the size is set to 1 for each patch and the
center is its feature. The detailed calculation after each merging is as follows:
(1) Computing the center of the newly generated region

µA∪B =
sAµA + sBµB

sA + sB
,

where sA and sB is the number of patches within region A and B.
(2) Computing the size of the newly generated region

sA∪B = sA + sB .

(3) Computing the cost of merging newly generated regions with other regions. Since the other regions are not changed, the



cost between them remains the same. The cost of merging is computed as
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E. Speed Comparison
Besides accuracy and diversity, the efficiency of the pre-processing in our method is also worth mentioning. We compare

the speed of generating region proposals for some other DINO-based methods and our method (i.e., bottom-up merging) in
Table IV. The speed is represented by the number of images processed per second and does not include the time of pre-
processing and feature extraction. 8 × speed and 16 × speed denote processing with 8 × and 16 × downsampled features,
respectively. All results are measured using the same 100 images on the same machine with Intel Core i5-11600K CPU.
Compared to previous methods, our method is significantly faster. In addition, the computational overhead of top-down
sampling is negligible (about 10−3 seconds per image) and can be omitted by parallel processing with the data loader.

Method TokenCut [19] CVPR22 DSM [11] CVPR22 MIS (Ours)
8× Speed (image/s) ↑ 0.31 1.73 7.37
16× Speed (image/s) ↑ 7.29 3.53 36.95

Table IV. Speed comparison.

In addition, since there are few cost items that need to be updated after each merge, the computational bottleneck of our
method does not lie in the matrix operation which will occupy more CPU cores, so the processing speed can be further
improved by processing different images in parallel. Furthermore, the the merging algorithm is executed in CPU and the
feature extraction is executed in GPU, thus the speed of pre-processing can be further optimized through multi-processing.
With the above optimizations, our pre-processing takes only about 2 minutes for 8498 images on a server with 4 NVIDIA
RTX 3090 GPUs and an AMD EPYC 7502 32-Core Processor, demonstrating the efficiency and potential for application to
large-scale data.

F. Additional Implementation Details
F.1. Patch Feature Extraction

To ensure the fully unsupervised setting, we employ a self-supervisedly pre-trained model as the feature extractor. Specif-
ically, a Vision Transformer (ViT) [5] trained with DINO [3] is adopted since the property of representing patch-level seman-
tics [3, 6, 15]. In order to prevent the extracted features from ignoring small objects or parts, we use ViT-Small [15] with



a patch size of 8. Before feeding an image into the ViT, we resize the image to make its height and width divisible by the
patch size (i.e., the target height is (h + p − h mod p) when the original height h is not divisible by the patch size p), and
the position embedding of the ViT is interpolated to fit the image size using bilinear interpolation. We finally use all output
tokens of the last block except the cls token as the patch features.

F.2. Hardware

The model is trained with two NVIDIA RTX 3090 GPUs using a batch size of 32.

F.3. Baselines

We use the official code to implement TokenCut [19]1, FreeMask [17]2, and DSM [11]3. The hyperparameters are set as
suggested in the original papers. The detailed settings are as follows.
TokenCut. We follow the salient detection setting and take the salient masks as region proposals to train the interactive
segmentation model. Specifically, we set the threshold τ for constructing the graph to 0.2 and set the weight ϵ for the
negative edge to 10−5. The key features of its last layer are used as the input features.
FreeMask. We follow the Free Mask setting and take the object masks as region proposals to train the interactive segmenta-
tion model. The shorter side size of the input image is set to 800. DenseCL [18] self-supervised pre-trained ResNet-101 [8]
is employed as the feature extractor. The features of the last stage are used as the key, which is then interpolated with scale
factors of (1.0, 0.5, 0.25) to form the query. The dot product of query and key is used as the soft mask, and the threshold for
binarizing the mask is set to 0.5. MatrixNMS [16] is employed to filter a large number of overlapping masks. After mask
NMS, we further filter out low-quality masks with maskness score less than 0.7.
DSM. We follow the multi-region segmentation setting and take the non-background regions as region proposals to train the
interactive segmentation model. When constructing the graph, the weight of each edge is calculated by the weighted sum of
feature similarity and color similarity, where the weight for feature similarity and color similarity is 1.0 and 10.0, respectively.
The color similarity is only added in k-NN nodes. We evaluate the results of extracting 5, 10, and 15 regions per image and
find that the result with 5 regions per image is best. ViT-S/16 is employed as the feature extractor and the key features of its
last layer are used as the input features. The supplementary experimental result of ViT-S/8 is shown in Table V.

Method Model
GrabCut Berkeley SBD DAVIS

NoC@85 ↓ NoC@90 ↓ NoC@85 ↓ NoC@90 ↓ NoC@85 ↓ NoC@90 ↓ NoC@85 ↓ NoC@90 ↓

DSM [11]
ViT-S/8 4.42 5.16 6.07 7.87 8.62 11.66 8.17 10.35
ViT-S/16 3.64 4.64 5.49 7.75 8.59 11.57 7.08 10.11

Table V. Supplementary experimental results for DSM [11].

G. Additional Qualitative Results
Merging Process. Figure II shows some examples of the merging process, where the two highlighted regions of the white
border are involved in the merge. Semantically meaningful regions at multiple granularities are gradually produced during
the merge process.
Multi-granularity Region Proposal. Figure III shows some example of regions discovered by our method in multiple gran-
ularities. The results are obtained by select the regions represented by the shallowest n nodes in the merging tree. The
proposals generated by our MIS contains diverse possible segments including common objects, parts of objects, and com-
bination of objects. The patches within each region are semantic consistent in some granularity, thus providing meaningful
interactions for training the model.
Interactive Image Segmentation. We show some examples of interaction and segmentation of our model on GradCut [14],
Berkeley [10], SBD [7], and DAVIS [13] in Figure IV and Figure V. It can be found that the trained model can respond
correctly to user interactions. For some simple objects, our model can produce satisfactory predictions within the first few
clicks. It can also handle complex scenes such as partially occluded objects and adjacent instances.

1https://github.com/YangtaoWANG95/TokenCut
2https://github.com/NVlabs/FreeSOLO
3https://github.com/lukemelas/deep-spectral-segmentation

https://github.com/YangtaoWANG95/TokenCut
https://github.com/NVlabs/FreeSOLO
https://github.com/lukemelas/deep-spectral-segmentation


Merging ProcessImage

Figure II. Visualization of the merging process.

Object Annotation Our Multi-granularity Region ProposalsImage

Figure III. Visualization of the multi-granularity region proposal.



1 click, IoU=0.84 2 clicks, IoU=0.94 4 clicks, IoU=0.983 clicks, IoU=0.97Ground-truth

GrabCut

1 click, IoU=0.88 3 clicks, IoU=0.90 5 clicks, IoU=0.994 clicks, IoU=0.97Ground-truth

1 click, IoU=0.48 3 clicks, IoU=0.85 7 clicks, IoU=0.984 clicks, IoU=0.92Ground-truth

1 click, IoU=0.43 2 clicks, IoU=0.90 5 clicks, IoU=0.974 clicks, IoU=0.96Ground-truth

1 click, IoU=0.83 2 clicks, IoU=0.84 4 clicks, IoU=0.933 clicks, IoU=0.90Ground-truth

Berkeley

1 click, IoU=0.50 2 clicks, IoU=0.95 4 clicks, IoU=0.983 clicks, IoU=0.97Ground-truth

1 click, IoU=0.86 2 clicks, IoU=0.97 4 clicks, IoU=0.983 clicks, IoU=0.98Ground-truth

1 click, IoU=0.48 2 clicks, IoU=0.77 4 clicks, IoU=0.963 clicks, IoU=0.93Ground-truth

Figure IV. Visualization of the interaction and segmentation. The green and red points indicate positive and negative clicks respectively.



1 click, IoU=0.10 2 clicks, IoU=0.73 5 clicks, IoU=0.914 clicks, IoU=0.84Ground-truth

SBD

1 click, IoU=0.31 2 clicks, IoU=0.45 14 clicks, IoU=0.906 clicks, IoU=0.78Ground-truth

1 click, IoU=0.31 2 clicks, IoU=0.58 6 clicks, IoU=0.913 clicks, IoU=0.74Ground-truth

1 click, IoU=0.40 2 clicks, IoU=0.91 6 clicks, IoU=0.944 clicks, IoU=0.93Ground-truth

1 click, IoU=0.89 2 clicks, IoU=0.93 4 clicks, IoU=0.953 clicks, IoU=0.93Ground-truth

DAVIS

1 click, IoU=0.60 2 clicks, IoU=0.86 4 clicks, IoU=0.933 clicks, IoU=0.91Ground-truth

1 click, IoU=0.86 3 clicks, IoU=0.97 7 clicks, IoU=0.985 clicks, IoU=0.98Ground-truth

1 click, IoU=0.88 2 clicks, IoU=0.92 4 clicks, IoU=0.973 clicks, IoU=0.96Ground-truth

Figure V. Visualization of the interaction and segmentation. The green and red points indicate positive and negative clicks respectively.
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