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S1. Proofs of All Lemmas

We first list necessary equations from our manuscript, for
the ease of following proofs in the supplementary material.

« D7 (V||V) represents the CF discrepancy between two
distributions and is formulated by
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« L£(V|[V) denotes the efficient metric in measuring the
discrepancy between two distributions:

LVIV) = maxDr(V|[V), @)

where Dx(V||V) is formulated by
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* Based on the proposed NCF network, the final loss

*Corresponding author

leafy, MaiXu, cindydeng,

11i1i2005}@buaa.edu.cn

function of our CCF-GAN can be decomposed by

LX,V]|X,Y) = m?fo(X,yH)?, V)
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where ECF of the joint distribution has the following
form:
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S1.1. Proof of Lemma 1

Lemma 1. For any two random variables V,1~)~ e RY
LV||V) > Dr(V||V) for any T, where Dr(V||V) is de-
fined in ().

Proof. Since ®y(t;) is bounded by |Py(t;)] < 1,
D7 (V||V) reaches its maximum at {t} }%_,
the set of samples {t M max1mally distinguish the CF of
the distribution V from the other one V.

Furthermore, since f in Dz (V||V) is built upon our NCF
network in (@), it is able to fit any linear and non-linear
functions. Thus, we choose the NCF function f to be a
linear function of f{ (v) = (t/)7v. Then, we arrive at

. In other words,

LOYIV) = maxD(V|]V)
o . G
> Dri(VIIV) = D (VI[V) = Dr(V||V),
where FT and TT represent the collections of linear pro-
]ectlons { ff() ", in (3) and maximally distinguishing
{tI}5_ in (T), respectively.
Th1s completes the proof of Lemma 1. O



S1.2. Proof of Lemma 2

Lemma 2. IfV,V € R are two random variables, L(V||V)
in (2) is a valid distance metric.

Proof. A valid distance metric requires several important
properties, namely, non-negativity, uniqueness, symmetry
and triangle inequality, which are proved in the sequel.
Non-negativity: Non-negativity means £(V||V) > 0. By
the definition, for each function f; we have
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Thus, we have
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which proves £L(V||V) = max; Dx(V||V) > 0.

Uniqueness: Uniqueness means £(V| V) = 0 if and only

if V = V, which ensures that the metric £(V||V) outputs 0
only when the two distributions are the same.

o Sufficiency ({V = V} = {L(vm?) 0}): When

V =V, itis obvious to have <I>V‘ = <I> for any f;(-).

Therefore, we arrive at

LYVID) = maxDr(V][V)
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which proves the sufficiency.

e Necessity: According to Lemma when L(V||V) =0,
=L(V||V) = Dr(V||V),¥T. (1)

This means (@v(ti)—ég(ti))(q)@(ti)—q’%(ti)) =0
for all t;. This way, ®y,(t;) = ®(t;) forall t;. Owing
to the one-to-one correspondence between a random
variable and its ECF, we have ®y,(t) = ®5(t ) for all

t if and only if V = V. Therefore, V = V when
L(V||V) = 0, which proves the necessity.

Symmetry: Symmetry means £(V||V) = L(V||V). It is

obvious that

LYV|IV) = max D (V][V)
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which proves the symmetry.
Triangle inequality: Triangle inequality ensures the rela-
tionship of L(V||V) < L(V||Z) + L(Z]|V) for any random
variables V, )7, Z, which ensures the smooth convergence
when minimising the metric £(V||V). To prove the triangle
inequality with the additional random variable Z, we have
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where the inequality holds by the Minkowski inequality. For
the convenience, in (T3)), | - | represents the conjugate square
of the complex-valued numbers, namely, c*=c-c*

Furthermore, we assume that Dx(V||V), Dx (V| |Z) and

Dr(Z ||V) reach the maximum at collections F» Vo=
{fivv o FVE = {fivz}i‘;l and F2V = {fzv i=1
respectively. Based on (13), we have the following relation-
ships

max Dr(V[V) = D5 (VIIV)

<Dy (V||Z) + Dy 5 (2]V)
< Dyvz(V||2) + Dys o (Z|V)
= max Dr(V]|2) + max Dy (Z][V).

(14)

Thus, we arrive at
LOVIV) < LVIIZ) + L(Z|]V). (15)
This completes the proof. O

For the completeness, we further provide in Proposition I]
the proof on the final loss function of our CCF-GAN, which



employs the classified treatment on the data &’ and auxiliary
Y cues.

Proposition 1. For two sets of random variables {X, Y}
and {X, YV}, L(X,V||X,Y) in Q) is a valid distance metric.

Proof. The non-negativity, symmetry and triangle inequality
can be proved following the proof of Lemma [2] by substi-
tuting V = (X,)) and ¥V = (X,)). We next prove the
remaining uniqueness in the following.
Uniqueness: Uniqueness means £(X, Y||X,)) = 0 if and
only if X' = 3? and )Y = )N), which ensures that the metric
L(X,Y||X,Y) outputs 0 only when the two sets of distribu-
tions are the same.

e Sufficiency ({X = X,y = 37} = {E(X,yH)?,j)) =
0}): When X' = X and Y= JNi, it is obvious to have
@ﬁy(t;) = @iny(tL) for any f;(-). Therefore, we
arrive at ,

LX,V]|X,Y) = m?fo(X,yH??, V)
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which proves the sufficiency.
e Necessity: Since t, is randomly sampled

by ﬁxedwrgvles, we can extelld _Lemma E] to
LX,V|X,Y) > ~DZ(X,))HX,J)) for any 7.
Thus, given L(X, Y||X,Y) = 0, we have

0=L(X,V||X,Y) = maxDr(X, V|| X,))
! . (17)
> Dr(X,V||X,Y), VT.

This means (@X_y(ti) — q))?&(ti))( }y(t,) —
@}y(ti)) = 0 for all t,. This way, ®x y(t;) =
® 5 5(t;) for all t;. Owing to the one-to-one corre-

spondence between a random variable and its ECF,
we have @y y(t) = @5 55(t) for all t if and only if

(x,)) = (2?,)7) Therefore, X = X and Yy = )7
when L(X, V||X,Y) = 0, which proves the necessity.

This completes the proof. O

S2. Additional Generation Results

S2.1. Conditional Generation and Interpolations on
ImageNet Dataset

Regarding ImageNet dataset, additional conditional gen-
eration samples of resolution 128 x 128 are illustrated in Fig.

[ST]by proposed CCF-GAN, trained on the Pytorch BigGAN
[[1] platform, and each row represents one-class-conditioned
generation. As can be seen from Fig. our CCF-GAN
achieves high-quality generation in various categories, and
also retains sufficient diversity within each class. Further-
more, we provide interpolations in Fig. [S2] The smooth
interpolated images from the first column to the last column
verify the desirable continuity of the latent space learnt by
our CCF-GAN, instead of merely memorizing the dataset
during training process.

S2.2. Comparison of Conditional Generation Sam-
ples of VGGFace_c1000 Dataset

The subjective comparison on VGGFace_c1000 dataset
is shown in Fig. All the methods were trained based
on the BigGAN [[1] platform. Each row in Fig. |S3|presents
the generation from the same class. Again, our CCF-GAN
achieves the best performance for the conditional generation.

S2.3. Advancements under StudioGAN [6] Plat-
form

Our CCF-GAN can achieve further improvements of con-
ditional generation, based on the StudioGAN [6]] platform, as
reported in Table@} As can be seen from this table, all meth-
ods almost witnessed improvements on FID values based
on the StudioGAN [6] platform. However, our CCF-GAN
still consistently achieves the best generation performances
among all the state-of-the-art methods.
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Figure S1: Conditional image generation on ImageNet dataset by the proposed CCF-GAN, trained based on the BigGAN [1]]
platform. Each row represents one class-conditioned generation.



(a) ReACGAN (b) ADCGAN (c) CCF-GAN (Ours)

Figure S3: Comparison on conditional image generation on VGGFace_c1000 dataset. Each row represents one class-
conditioned generation.



Table S1: Comparison on FID scores on CIFAR10, VGGFace_c1000, ImageNet datasets on Pytorch BigGAN [1] and
StudioGAN [6] platforms. Symbol * denotes that the results are reported from [1], whereas t from [2]], ¥ from [3]], ** for [4]
and Tt for [3]]. Otherwise, we ran the available codes by the corresponding default settings. We denote the best FID by red
color and the second best by blue color.

Backbone Dataset BigGAN [1] ContraGAN [4] ACGAN [7] TACGAN [2] ReACGAN [S] ADCGAN [3] | CCF-GAN (Ours)
CIFAR10 14.73* 10.60** 8.01 8.42 6.22 7.17 6.08
Pytorch BigGAN [1] | VGGFace_c1000 24.07% — — 13.60" 6.47 7.94 5.70
ImageNet 22.77F 19.44** 184.411 23.75% — 16.751 11.34
CIFAR10 8.08% 8.22% 8.45% 8.01% 7.88% 8.42ft 4.71
StudioGAN [6] VGGFace_c1000 4.17 6.59 6.76 9.54 5.30 4.32 3.91
ImageNet 16.36% 25.16% 25.35% — 13.98% 11.65t 11.11




