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S1. Proofs of All Lemmas

We first list necessary equations from our manuscript, for
the ease of following proofs in the supplementary material.

• DT (V||Ṽ) represents the CF discrepancy between two
distributions and is formulated by
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• L(V||Ṽ) denotes the efficient metric in measuring the
discrepancy between two distributions:

L(V||Ṽ) = max
f

DF (V||Ṽ), (2)

where DF (V||Ṽ) is formulated by

DF (V||Ṽ) =
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• Based on the proposed NCF network, the final loss
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function of our CCF-GAN can be decomposed by
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where ECF of the joint distribution has the following
form:
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S1.1. Proof of Lemma 1

Lemma 1. For any two random variables V, Ṽ ∈ Rd,
L(V||Ṽ) ≥ DT (V||Ṽ) for any T , where DT (V||Ṽ) is de-
fined in (1).

Proof. Since ΦV(ti) is bounded by |ΦV(ti)| ≤ 1,
DT (V||Ṽ) reaches its maximum at {t†i}ki=1. In other words,
the set of samples {t†i}ki=1 maximally distinguish the CF of
the distribution V from the other one Ṽ .

Furthermore, since f in DF (V||Ṽ) is built upon our NCF
network in (3), it is able to fit any linear and non-linear
functions. Thus, we choose the NCF function f to be a
linear function of f†

i (v) = (t†i )
Tv. Then, we arrive at

L(V||Ṽ) = max
f

DF (V||Ṽ)

≥ DF†(V||Ṽ) = DT †(V||Ṽ) ≥ DT (V||Ṽ),
(7)

where F† and T † represent the collections of linear pro-
jections {f†

i (·)}ki=1 in (3) and maximally distinguishing
{t†i}ki=1 in (1), respectively.

This completes the proof of Lemma 1.



S1.2. Proof of Lemma 2

Lemma 2. If V, Ṽ ∈ Rd are two random variables, L(V||Ṽ)
in (2) is a valid distance metric.

Proof. A valid distance metric requires several important
properties, namely, non-negativity, uniqueness, symmetry
and triangle inequality, which are proved in the sequel.

Non-negativity: Non-negativity means L(V||Ṽ) ≥ 0. By
the definition, for each function fi we have
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which proves L(V||Ṽ) = maxf DF (V||Ṽ) ≥ 0.

Uniqueness: Uniqueness means L(V||Ṽ) = 0 if and only
if V = Ṽ , which ensures that the metric L(V||Ṽ) outputs 0
only when the two distributions are the same.

• Sufficiency ({V = Ṽ} ⇒ {L(V||Ṽ) = 0}): When
V = Ṽ , it is obvious to have Φfi

V = Φfi

Ṽ
for any fi(·).

Therefore, we arrive at
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which proves the sufficiency.

• Necessity: According to Lemma 1, when L(V||Ṽ) = 0,

0=L(V||Ṽ) ≥ DT (V||Ṽ),∀T . (11)

This means
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)(
Φ∗

V(ti)−Φ∗
Ṽ
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for all ti. This way, ΦV(ti) = ΦṼ(ti) for all ti. Owing
to the one-to-one correspondence between a random
variable and its ECF, we have ΦV(t) = ΦṼ(t) for all
t if and only if V = Ṽ . Therefore, V = Ṽ when
L(V||Ṽ) = 0, which proves the necessity.

Symmetry: Symmetry means L(V||Ṽ) = L(V||Ṽ). It is
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which proves the symmetry.
Triangle inequality: Triangle inequality ensures the rela-
tionship of L(Ṽ||V) ≤ L(V||Z) +L(Z||Ṽ) for any random
variables V, Ṽ,Z , which ensures the smooth convergence
when minimising the metric L(Ṽ||V). To prove the triangle
inequality with the additional random variable Z , we have

DF (V||Ṽ) =
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(13)

where the inequality holds by the Minkowski inequality. For
the convenience, in (13), | · |2 represents the conjugate square
of the complex-valued numbers, namely, |c|2 = c · c∗.

Furthermore, we assume that DF (V||Ṽ), DF (V||Z) and
DF (Z||Ṽ) reach the maximum at collections FV,Ṽ =

{fV,Ṽ
i }ki=1, FV,Z = {fV,Z

i }ki=1 and FZ,Ṽ = {fZ,Ṽ
i }ki=1,

respectively. Based on (13), we have the following relation-
ships
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Thus, we arrive at

L(V||Ṽ) ≤ L(V||Z) + L(Z||Ṽ). (15)

This completes the proof.

For the completeness, we further provide in Proposition 1
the proof on the final loss function of our CCF-GAN, which



employs the classified treatment on the data X and auxiliary
Y cues.

Proposition 1. For two sets of random variables {X ,Y}
and {X̃ , Ỹ}, L(X ,Y||X̃ , Ỹ) in (5) is a valid distance metric.

Proof. The non-negativity, symmetry and triangle inequality
can be proved following the proof of Lemma 2, by substi-
tuting V = (X ,Y) and Ṽ = (X̃ , Ỹ). We next prove the
remaining uniqueness in the following.
Uniqueness: Uniqueness means L(X ,Y||X̃ , Ỹ) = 0 if and
only if X = X̃ and Y = Ỹ , which ensures that the metric
L(X ,Y||X̃ , Ỹ) outputs 0 only when the two sets of distribu-
tions are the same.

• Sufficiency ({X = X̃ ,Y = Ỹ} ⇒ {L(X ,Y||X̃ , Ỹ) =

0}): When X = X̃ and Y = Ỹ , it is obvious to have
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which proves the sufficiency.

• Necessity: Since ty is randomly sampled
by fixed rules, we can extend Lemma 1 to
L(X ,Y||X̃ , Ỹ) ≥ DT (X ,Y||X̃ , Ỹ) for any T .
Thus, given L(X ,Y||X̃ , Ỹ) = 0, we have

0=L(X ,Y||X̃ , Ỹ) = max
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(17)

This means
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ΦX̃ ,Ỹ(ti) for all ti. Owing to the one-to-one corre-
spondence between a random variable and its ECF,
we have ΦX ,Y(t) = ΦX̃ ,Ỹ(t) for all t if and only if

(X ,Y) = (X̃ , Ỹ). Therefore, X = X̃ and Y = Ỹ
when L(X ,Y||X̃ , Ỹ) = 0, which proves the necessity.

This completes the proof.

S2. Additional Generation Results
S2.1. Conditional Generation and Interpolations on

ImageNet Dataset

Regarding ImageNet dataset, additional conditional gen-
eration samples of resolution 128×128 are illustrated in Fig.

S1 by proposed CCF-GAN, trained on the Pytorch BigGAN
[1] platform, and each row represents one-class-conditioned
generation. As can be seen from Fig. S1, our CCF-GAN
achieves high-quality generation in various categories, and
also retains sufficient diversity within each class. Further-
more, we provide interpolations in Fig. S2. The smooth
interpolated images from the first column to the last column
verify the desirable continuity of the latent space learnt by
our CCF-GAN, instead of merely memorizing the dataset
during training process.

S2.2. Comparison of Conditional Generation Sam-
ples of VGGFace_c1000 Dataset

The subjective comparison on VGGFace_c1000 dataset
is shown in Fig. S3. All the methods were trained based
on the BigGAN [1] platform. Each row in Fig. S3 presents
the generation from the same class. Again, our CCF-GAN
achieves the best performance for the conditional generation.

S2.3. Advancements under StudioGAN [6] Plat-
form

Our CCF-GAN can achieve further improvements of con-
ditional generation, based on the StudioGAN [6] platform, as
reported in Table S1. As can be seen from this table, all meth-
ods almost witnessed improvements on FID values based
on the StudioGAN [6] platform. However, our CCF-GAN
still consistently achieves the best generation performances
among all the state-of-the-art methods.
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Figure S1: Conditional image generation on ImageNet dataset by the proposed CCF-GAN, trained based on the BigGAN [1]
platform. Each row represents one class-conditioned generation.



(a) Conditional random generation (b) Interpolations across different classesFigure S2: Interpolations of our CCF-GAN across different class labels of ImageNet dataset.
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Figure S3: Comparison on conditional image generation on VGGFace_c1000 dataset. Each row represents one class-
conditioned generation.



Table S1: Comparison on FID scores on CIFAR10, VGGFace_c1000, ImageNet datasets on Pytorch BigGAN [1] and
StudioGAN [6] platforms. Symbol ∗ denotes that the results are reported from [1], whereas † from [2], ‡ from [5], ∗∗ for [4]
and †† for [3]. Otherwise, we ran the available codes by the corresponding default settings. We denote the best FID by red
color and the second best by blue color.

Backbone Dataset BigGAN [1] ContraGAN [4] ACGAN [7] TACGAN [2] ReACGAN [5] ADCGAN [3] CCF-GAN (Ours)

CIFAR10 14.73∗ 10.60∗∗ 8.01 8.42 6.22 7.17 6.08

VGGFace_c1000 24.07† — — 13.60† 6.47 7.94 5.70Pytorch BigGAN [1]

ImageNet 22.77† 19.44∗∗ 184.41† 23.75† — 16.75†† 11.34

CIFAR10 8.08‡ 8.22‡ 8.45‡ 8.01‡ 7.88‡ 8.42†† 4.71

VGGFace_c1000 4.17 6.59 6.76 9.54 5.30 4.32 3.91StudioGAN [6]

ImageNet 16.36‡ 25.16‡ 25.35‡ — 13.98‡ 11.65†† 11.11


