
Supplementary Material

Overview
This appendix is organized as follows:
Appendix A provides the mathematical formulae used in

hyperbolic neural networks. Sec 3.2 & Sec 3.3
Appendix B gives more implementation details of HAE.

Sec 4.1
Appendix C shows the results of the ablation study of

downstream tasks for Animal Faces [5], Flowers [7] and
VGGFaces [8]. Sec 4.3

Appendix D compares the embeddings of images in hy-
perbolic space and Euclidean space. Sec 4.4

Appendix E visualizes the interpolation on different radii
in the Poincaré disk, along the geodesic, and on W+-space.
Sec 4.3

Appendix F shows the images generated with different
radii in the Poincaré disk. Sec 4.3

Appendix G compares the images generated by state-of-
the-art few-shot image generation method, i.e. AGE [1] and
our methods HAE. Sec 4.4

Appendix H gives more details of the user study we con-
ducted. Sec 4.4

Appendix I gives more examples generated by HAE. Sec
4.4

A. Hyperbolic Neural Networks
For hyperbolic spaces, since the metric is different from

Euclidean space, the corresponding calculation operators
also differ from Euclidean space. Recall that in Eq. (11), we
have two operations: Möbius addition and Möbius scalar
multiplication [4], given fixed curvature c.

For any given vectors x, y ∈ Hn, the Möbius addition is
defined by:

x⊕cy =

(
1− 2c⟨x, y⟩ − c∥y∥22

)
x+

(
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)
y

1− 2c⟨x, y⟩+ c2∥x∥22∥y∥22
, (1)

where ∥ · ∥ denotes the 2-norm of the vector, and ⟨·, ·⟩ de-
notes the Euclidean inner product of the vectors.

Similarly, the Möbius scalar multiplication of a scalar r
and a given vector x ∈ Hn is defined by:
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) x
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We also would like to give explicit forms of the expo-
nential map and the logarithmic map which are used in our
model to achieve the translation between hyperbolic space
and Euclidean space as mentioned in Sec 3.2.

The exponential map expcx : TxDn
c
∼= Rn → Dn

c , that
maps from the tangent spaces into the manifold, is given by
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B. Implementation Details and Analysis
As mentioned in Sec 3.2, the output of pSp: wi ∈

R18×512. The MLP encoder MLPE used in HAE, is split
into three parts: encoderlow, encodermid, and encoderhigh
for encoding lower layer attributes, middle layer attributes,
and higher layer attributes. The encoderlow is a 5-layer
MLP with a Leaky-ReLU (slope=0.2) activation function.
The first three layers of wi are then fed into encoderlow.
The dimension of the output attribute is 128. Similar to
encoderlow, the encodermid is also an 5-layer MLP. 3-7
layers of wi is then fed into encodermid, the dimension of
the output attribute is also 128. Different from encoderlow
and encodermid, encoderhigh is an 8-layer MLP. And we
fed the last 12 layers attributes of wi into it. The dimen-
sion of the output attribute of encoderhigh is 256. There-
fore, the final dimension of the Euclidean latent code zRi is
128 + 128 + 256 = 512. While the MLP decoder MLPD is
the reversed version of MLPE , taking z′Ri ∈ R512 as input
and output w′

i ∈ R18×512.
During the training process, the constants defined in Eq.

(10) are set as λ1 = 1, λ3 = 0.3, and λ2 changes dy-
namically based on the value of Lrec which guarantees that
0.6 ≥ λ2Lrec ≥ 0.3. Besides, we employ Adam optimizer
with a learning rate of 1e−4, and the batch size is set to 8.

In addition, as a remark, we choose the largest radius as 6
in most of our experiments as in hyperbolic space since any
vector asymptotically lying on the surface unit N -sphere
will have a hyperbolic length of approximately r = 6.2126,
which can be directly calculated by Eq. (2).

Finally, we want to show that HAE can be easily trained.
The size of trainable parameters of HAE is around one hun-
dred million which is small compared with other models
with billions of parameters. It can be trained well within
one day using a single NVIDIA TITAN RTX.

C. Ablation Study of Downstream Task
Similar to the ablation study in Sec 4.3. We also con-

duct data augmentation via HAE for image classification on
Animal Faces [5], Flowers [7], and VGGFaces [8]. Due



to the limited size of Flowers and VGGFaces datasets. We
randomly select 10, 15 and 15 images for each category as
train, val and test, respectively. Following [2, 1], a ResNet-
18 backbone is initialized from the seen categories, then the
model is fine-tuned on the unseen categories referred to as
the baseline. 30 images are generated for each unseen cate-
gory as data augmentation.

The result of Animal Faces is shown in Tab. 1. It shows
that the accuracy of the classifier improves after using the
AdamW optimizer. The experiment result essentially con-
firms the original result in Sec 4.3. The data augmenta-
tion improves the performance of the classifier when the
hyperbolic radius rD is larger than 4. rD = 5 achieves the
best performance on the classification experiment mainly
because it achieves the best trade-off between the quality
and diversity. However, the performance drops when the
radius is smaller than 4. This is because the semantic at-
tributes change too much and thus mislead the classifier.

The result of Flowers is presented in Tab. 2. Similar to
the result of Animal Faces, the diversity and quality of gen-
erated images are largely controlled by the hyperbolic radii
rD. As the radius becomes smaller, HAE generates images
of higher diversity but categories also gradually change to
others. rD = 6 achieves the best performance on the classi-
fication experiment.

However, Tab. 3 shows that all accuracy drops when we
do data augmentation on VGGFaces dataset. We estimate
that this is due to the low quality of inversion that harms the
performance of the classifier. Besides, since we only select
10 images for each category for training, with the limited
size of VGGFaces, it is easy to overfit. To evaluate our es-
timation, we further test the performance of the classifier
trained by the original images and inversion images without
any perturbation, denoted as inversion in Tab. 3. This result
proves that our estimation is correct. The accuracy of the
classifier trained by augmented images increases compared
with the inversion, which shows that the augmentation still
works and improves the generalization performance of our
classifier. rD = 3 achieves the best performance on the
classification experiment except the baseline.

It is also worth noticing that, the FID and LPIPS scores
inTab. 1, Tab. 2, and Tab. 3 are different from the scores
we calculated in Sec 4.4. That is because we only use a
very small subset of the data in this ablation study which
can not represent the distribution of all images in the test
dataset. Besides, the improvement of a classifier trained on
augmented data is trivial, we believe this is due to the limi-
tation of the encoding method,i.e. psp [9] and generator,i.e.
StyleGAN2 [3], which can not generate images with high
enough quality.

Hyperbolic
Radius Accuracy FID(↓) LPIPS(↑)

baseline 67.34 - -

6.0 68.22 46.89 0.4520
5.5 68.56 48.68 0.4651
5.0 69.33 52.08 0.4823
4.5 68.22 60.87 0.5174
4.0 67.67 65.83 0.5386
3.5 67.33 68.44 0.6034
3.0 66.89 69.40 0.6316

Table 1: Ablation of same perturbation on different radii on Ani-
mal Faces.

Hyperbolic
Radius Accuracy FID(↓) LPIPS(↑)

baseline 71.76 - -

6.0 79.21 94.35 0.4640
5.5 77.25 98.09 0.4871
5.0 75.29 97.81 0.5110
4.5 78.82 97.53 0.5330
4.0 75.29 97.58 0.5499
3.5 73.33 101.52 0.6152
3.0 72.55 105.05 0.6439

Table 2: Ablation of same perturbation on different radii on Flow-
ers.

Hyperbolic
Radius Accuracy FID(↓) LPIPS(↑)

baseline 77.99 - -

inversion 69.53 25.46 0.2325

6.0 71.98 26.19 0.2702
5.5 72.53 26.46 0.2887
5.0 72.45 26.83 0.3080
4.5 72.32 26.92 0.3258
4.0 72.96 27.02 0.3405
3.5 74.05 26.35 0.4044
3.0 74.44 25.90 0.4411

Table 3: Ablation of same perturbation on different radii on VG-
GFaces.

D. Comparison with Euclidean space

In this section, we mainly compare hyperbolic space
with Euclidean space by UMAP visualization [6], which
is an extension of our analysis in Sec 4.4. Following the
UMAP visualization on hyperbolic space for the Animal



Faces [8] dataset, we first show the UMAP visualization
of the embeddings of images in W+-space, where each
embedding is of 18 × 512-dimension and therefore we re-
size them for UMAP calculation. The results for Euclidean
UMAP of Animal Faces dataset are shown in Fig. 1. We ob-
serve that although the transition across different categories
is smooth, there are no obvious clusters in the plot even for
some significantly different species (e.g., polar bears and
foxes).

Figure 1: UMAP visualization for Animal Faces dataset, while the
embeddings are in the W+-space of the same model.

We further carry on the experiments on the other two
datasets. For Flowers [7] dataset, we use all images in
the test dataset to generate the embeddings for both spaces,
where there are 101 classes in total. The number of images
in each class varies due to the original setting of the dataset.
The results of the Flowers dataset are shown in Fig. 3, where
clusters are more obvious in hyperbolic space and the simi-
larity between classes is also well-reflected.

For the VGGFaces dataset [8], the results are shown in
Fig. 4. Similarly, the clusters are better represented in hy-
perbolic settings. We observe that in hyperbolic space, im-
ages with similar low-level attributes (e.g., wearing black
frame glasses, having mutton chops beard) are clustered.
We need to pay attention to the small clusters in both plots
where images are represented with tall rectangles (in the
plot). These images do not share semantic attributes but are
clustered together, which can be the influence of heavy wa-
termarks on the images. This also encourages us to train the
model with high-quality datasets for better GAN inversions.

E. Interpolation Visualization

In this section, we offer a more detailed comparison of
different radii and latent spaces. The results are shown in
Fig. 5, where r refers to the ratio of the whole geodesic de-
scribed in Eq. (11) starting from image A to image B, e.g.,
when r = 0.5, the interpolation is exactly the hyperbolic
mean of these two images. We observe that in W+-space,
both high-level attributes and low-level attributes changed
together while in hyperbolic space, we can achieve more
detailed editing on low-level attributes while keeping high-
level attributes unchanged, while the radius can control the
degree of change more precisely. When the hyperbolic ra-
dius is large, the category of the given image remains the
same before reaching the middle point of the curve. This
property allows us to generate diverse images of the given
image without changing its category-relevant attributes. As
the hyperbolic radius becomes smaller, the higher-level at-
tributes gradually change in the early stage of the interpola-
tion. The interpolation visualization on geodesic shows that
the image gradually changes from fine-grained to abstract
to fine-grained. These results also explain our method of
adding details by rescaling after taking the geodesic which
will lead to a relatively abstract average.

F. Images Generated with Different Radii

In this section, we give more examples of images gen-
erated by HAE with different radii in the Poincaré disk.
As Fig. 6 shows, the high-level attributes, a.k.a. category-
relevant attributes do not change when the radius is large
which allows us to generate diverse images without chang-
ing the category. However, the images generated by HAE
become more abstract and semantically diverse when the
hyperbolic radius rD becomes smaller. The images grad-
ually lose fine-grained details and change higher-level at-
tributes as they move closer to the center of the Poincaré
disk. For the few-shot image generation task, large radii
work well since we want to change the category-irrelevant
attributes of a given image. Nevertheless, our method HAE
is not only capable of few-shot image generation but has
great potential for other downstream tasks. For instance,
HAE is able to generate a bunch of images of felines given
an image of a cat. This can be done by rescaling the latent
code to a relatively small radius in the hyperbolic space.
Then we can add random perturbation to get the average
code of multiple categories of felines. Finally, diverse im-
ages with fine-grained details of felines can be generated
by moving those average codes to their children with larger
radii.



G. Comparison with State-of-the-art Few-shot
Image Generation Method

We also provide a comparison of images generated by
the state-of-the-art method, i.e. AGE [1] and our methods
on three datasets. As Fig. 7 shows, our method is able
to generate images with more semantic diversity. For in-
stance, for dogs, HAE generates images with different light
conditions and angles compared with images generated by
AGE. Furthermore, for the woman in the third row from
the bottom, HAE can change the image from a colored
photo to a monochrome photo without changing her iden-
tity. However, our method also slightly changes some at-
tributes compared with the original images, e.g., the hair
color of dogs and the petal color of flowers. This is be-
cause the color varies within the category in these datasets
which can indicate color is a category-irrelevant attribute for
those categories. Therefore, our method does not change
the category-relevant attributes but has more semantic di-
versity. Besides, images generated by HAE look more natu-
ral compared with images generated by AGE. Most impor-
tantly, AGE requires datasets with labels to learn the fea-
ture code book. However, the hierarchical representation in
HAE can be learned using unsupervised or self-supervised
learning if we have enough computing resources. There-
fore, our work has great potential and can be applied to
many other downstream tasks in future work.

H. User Study
As mentioned, we conducted an extensive user study

with a fully randomized survey. Results are shown in the
main text. Specifically, we compared AGE and HAE in the
following protocol:

1. We randomly chose 20 images per dataset, and for
each image, we then generated 3 variants using AGE
and HAE, respectively. Overall, there were 60 original
images and 180 generated variants in total.

2. For each sample of each model, we grouped the 3 gen-
erated variants together, denoted as an image block.
We then shuffled the following orders in the dataset:
1) order of images, 2) order of each block, 3) order of
images in the block, an illustration is shown in Fig. 2.

3. We gathered 50 volunteers from various backgrounds
who were asked to choose one image block for one
sampled image based on their evaluation of image di-
versity and quality subjectively. The results are then
re-arranged.

The result breakdowns are shown as follows: Ani-
mal Faces: 658/1000; Flowers: 523/1000; VGGFaces:
562/1000. We also provide more examples used in the user
study in Fig. 8.

input

input

AGE 1 AGE 2 AGE 3

AGE Block

HAE 1 HAE 2 HAE 3

HAE Block

HAE 1 HAE 2 HAE 3

HAE Block

AGE 1 AGE 2 AGE 3

AGE Block

Figure 2: Illustration of shuffling in the user study, where inputs,
blocks, and generated variants in each block were shuffled.

I. Additional Examples Generated by HAE
We provide more samples generated by HAE in Fig. 9,

Fig. 10, and Fig. 11. The radius we choose is 6.2126 and
the length of perturbation is 8.
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Figure 3: UMAP Visualization for Flowers dataset. Left: Hyperbolic space. Right: Euclidean space (W+-space).

Figure 4: UMAP Visualization for VGGFaces dataset. Left: Hyperbolic space. Right: Euclidean space (W+-space). In each visualization,
no images are from the same category.
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Figure 5: Interpolation along the geodesic and different radii in hyperbolic space and along the straight line in W+-space on Animal Faces,
Flowers, and VGGFaces.
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Figure 6: One-shot image generation by HAE on different radii on Animal Faces.



Input AGE HAE(ours)
Figure 7: Comparison between images generated by AGE and HAE on Animal Faces, Flowers, and VGGFaces.



Input AGE HAE(ours)
Figure 8: More examples used in the user study on three datasets.



Input Output
Figure 9: One-shot image generation by HAE on Animal Faces.



Input Output
Figure 10: One-shot image generation by HAE on Flowers.



Input Output
Figure 11: One-shot image generation by HAE on VGGFaces.


