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1. Introduction
In this supplementary material, we detail the pipeline

of our UHDNeRF, i.e., regressing sampled locations to the
scene properties with a frequency separation strategy. Fur-
thermore, we provide a more detailed evaluation on the
LLFF dataset both qualitatively and quantitatively. In ad-
dition, we offer a supplementary video on representative
scenes (leaves and flowers) at resolution 4032 × 3024 to
better illustrate the superiority of our method on 4K render-
ing.
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Figure 1. Pipeline of clustering.

2. Details of UHDNeRF
In this section, we detail the pipeline of our UHDNeRF.

As described in algorithm 1, the inputs of UHDNeRF are
the set of N samples X sampled from rays within a local
patch, the corresponding viewing directions D, the point
cloud P containing N̄ 3D points, and the number of neigh-
boring points k per sample. We first query k nearest neigh-
bors (we only store the point indexes for saving memory)
for each sample in X (Line 2) with the fast query method
introduced in Point-NeRF [1]. The k points of a sample x
are sorted from near to far, and if there are no more neigh-
boring points, we set NULL in the corresponding entries
of Pind. Since Pind is redundant (a point may appear sev-
eral times), we calculate the unique point set P (containing
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Algorithm 1: Pipeline of UHDNeRF

Input: the set of sample locations X ∈ RN×3, the
directions D ∈ RN×3, the point cloud
P ∈ RN̄×6, and the neighbor number k.

Output: the sets of densities V ∈ RN and colors
C ∈ RN×3.

1 V← {},C← {};
2 Pind ∈ RN×k ← query point Index(X,P, k);
3 P ∈ RM×6 ← get unique points(P,Pind);
4 F ∈ RM×64 ← Φpoint(P);
5 ζ ∈ RM ← cluster(P);
6 for x ∈ X and d ∈ D do
7 (σ,Fσ)← Φσ(x);
8 V.add(σ);
9 pnear ← P[Pind[x, 0]];

10 if pnear = NULL then
11 c← ΦL(Fσ,d);
12 C.add(c);
13 else
14 P ′ ∈ RN ′×6 ← P[ζ = ζ[pnear]];
15 Fp ∈ RN ′×64 ← F [P ′];
16 Fg,x ∈ R64 ← Φglobal(Maxpool(Fp),x);
17 i← 0,Fl ← {};
18 while Pind[x, i] ̸= NULL do
19 pi ← P[Pind[x, i]];
20 (γi,βi)← CFT(x,x− pi);
21 Fl.add(γ

i ×Fp[p
i] + βi);

22 end
23 Fl,x ∈ R64 ← Maxpool(Fl);
24 c← ΦH(Fσ,d,Fg,x,Fl,x);
25 C.add(c);
26 end
27 Return V , C;
28 end

M points, where M ≪ N ) and generate the corresponding
point feature set F (Line 3∼4).
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Figure 2. Comparison with state-of-the-art methods on the fern dataset.

We cluster P into several groups (Line 5). Since P is
constrained within a cone cast from the camera center o
along the central viewing direction d∗, we adopt an efficient
statistic-based method for clustering. As shown in Fig. 1,
we project all the points in P onto a line parallel to d∗. We
divide the line segment containing points into t intervals and
count the number of projected points in each interval, gener-
ating a histogramH. Then, we search for splitting locations
of H, which are later used for clustering. Specifically, a
splitting location hs is defined as hs = (hl + hr)/2, where
hl is the last histogram bin (beyond a threshold Γ) of a se-
ries of adjacent bins, and hr is the first bin beyond Γ after
hl (see the red rectangles/points in Fig. 1). We utilize all the
splitting locations to cluster the point set P , generating a set
of cluster numbers ζ. The interval number t is set to 256,
and the threshold Γ is half of the highest histogram bin.

For any x ∈ X, we estimate the density σ at that location
and query its nearest neighboring point pnear (Line7∼9). If
pnear does not exist, we directly regress the color c at that
location with the low-frequency branch ΦL (Line 10∼12).
Otherwise, we obtain x’s point cluster P ′ (containing N ′

points where N ′ ≤ M ) by gathering points in P that have
the same cluster number as pnear (Line 14). We generate
the global structure feature Fg,x from P ′ (Line 15∼16) and
the local point-wise feature Fl,x from the i (i ≤ k) neigh-
boring points of x (Line 17∼23). After that, we regress
the color at x with the high-frequency branch ΦH (Line
24∼25).

3. More comparisons on the LLFF dataset
The LLFF dataset consists of 8 forward-facing scenes

with training views between 20 and 62. All the image res-
olution is 4032 × 3024. We hold out 1/8 of the images for
each scene to form the test set as the original NeRF does [2].
Table 1 shows the per-scene quantitative results of the com-
parisons on the LLFF dataset. As seen, our method achieves
the best PSNRs, SSIMs, and LPIPSs in all scenes. Further-
more, we present more visual comparisons with the state-
of-the-art methods [3, 4, 5]. As shown in Fig. 2∼8, the

proposed UHDNeRF outperforms these methods on gener-
ating 4K ultra-high-resolution (4032 × 3024) results with
rich details.
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Table 1. Quantitative comparison on the LLFF dataset. We use MipNeRF-360+ and Instant NGP+ to denote the corresponding enhanced
versions. The best metrics are highlighted in bold.

Method Dataset
Fern Flower Fortress Horns Leaves Orchids Room Trex

PSNR ↑
MipNeRF-360 [3] 23.27 27.07 28.68 25.29 19.23 19.31 29.93 24.96
MipNeRF-360+ 23.34 27.13 28.77 25.33 19.35 19.39 30.02 25.05
Instant NGP [4] 25.84 27.62 30.99 27.04 19.81 23.99 33.23 27.92
Instant NGP+ 26.32 28.41 31.49 27.64 20.52 24.53 33.70 28.31
NeRF-SR [5] 22.53 25.36 28.33 23.19 18.37 18.45 29.01 23.78
Ours 27.62 30.03 32.55 28.47 22.95 26.35 34.86 29.32

SSIM ↑
MipNeRF-360 [3] 0.771 0.797 0.866 0.777 0.636 0.654 0.918 0.815
MipNeRF-360+ 0.776 0.805 0.869 0.782 0.645 0.660 0.921 0.821
Instant NGP [4] 0.812 0.806 0.878 0.804 0.691 0.740 0.926 0.840
Instant NGP+ 0.819 0.811 0.883 0.809 0.696 0.748 0.929 0.847
NeRF-SR [5] 0.729 0.732 0.818 0.725 0.541 0.618 0.880 0.751
Ours 0.832 0.828 0.897 0.818 0.725 0.760 0.941 0.859

LPIPS ↓
MipNeRF-360 [3] 0.414 0.409 0.337 0.435 0.443 0.460 0.341 0.418
MipNeRF-360+ 0.388 0.385 0.323 0.417 0.428 0.452 0.335 0.402
Instant NGP [4] 0.366 0.403 0.314 0.396 0.432 0.383 0.316 0.330
Instant NGP+ 0.353 0.398 0.301 0.382 0.426 0.378 0.303 0.321
NeRF-SR [5] 0.571 0.594 0.568 0.607 0.616 0.647 0.461 0.517
Ours 0.308 0.340 0.283 0.359 0.364 0.359 0.287 0.308
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Figure 3. Comparison with state-of-the-art methods on the flower dataset.
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Figure 4. Comparison with state-of-the-art methods on the horns dataset.
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Figure 5. Comparison with state-of-the-art methods on the fortress dataset.
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Figure 6. Comparison with state-of-the-art methods on the orchids dataset.
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Figure 7. Comparison with state-of-the-art methods on the room dataset.
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Figure 8. Comparison with state-of-the-art methods on the trex dataset.


