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A1. The GarmCap Dataset

Our newly introduced dataset, GarmCap, contains 496
high-quality textured 3D garment scans in various poses.
As shown in Fig. A1, this dataset includes four different
garments: a T-shirt with rich color patterns (G01), a long
coat with black-white strip patterns (G02), a thick coat with
a fading graywhite texture (G03) and an orange coat (G04).
Raw data are triangular meshes of full-body humans wear-
ing these garments in static poses, collected in a cage with
128 cameras. For obtaining garments segmented from full-
body scans, we first render each mesh to 128 random views
and use SCHP [4] to obtain image-domain segmentation re-
sults. Each triangular face is then labeled as garment or
non-garment by voting, using their corresponding image-
domain labels. We then manually inspect each segmented
mesh and fix possibly incorrect boundaries.

As preprocessing, we fit SMPL [6] body models to these
meshes using image-domain keypoints plus the VPoser [8]
body pose prior. Since texture images are in general of
higher frequency than geometry, to obtain per-vertex colors,
we first average texture colors over each triangular face, and
then transfer these averaged face colors to neighboring ver-
tices. Furthermore, we divide the color of each vertex by its
ambient occlusion value to alleviate the effects of shadows.

A2. Implementation Details

In this section, we introduce implementation details of
our method and the experimental setup for baselines.

For all neural deformation fields in our pipeline, we use
a 5-layer multilayer perceptron (MLP) implementation with
ELU [1] activations (except for the output layer). Each
hidden layer has 128 neurons. For the number of LBO
eigenfunctions, we compute 100 eigenfunctions for each
scan mesh and estimate the initial functional map A0 us-
ing all the 100 components. When used as input to the
neural deformations and as intrinsic embeddings, we use

K = 50 to reduce computation cost. For energy weights
we choose w1 = 1, w2 = 10, w3 = 1000 in Eq. (3),
w4 = 1, w5 = 0.05, w6 = 100 in Eq. (6) and w7 =
1, w8 = 0.1, w9 = 0.1 in Eq. (11). For balancing geom-
etry and color information as described in Section 3.5, we
set different β1 and β2 values for each garment individually
(Table A1) since their brightness can differ greatly. All opti-
mizations are done with Adam [3], with learning rate set to
0.001 for smooth template acquisition and 0.005 for neural
deformation fields. We optimize Eq. (3) for 5000 iterations,
Eq. (6) for 3000 iterations and Eq. (11) for 300 iterations.
For Chamfer distance, we use the PyTorch3D [10] imple-
mentation. Note that PyTorch3D uses squared distances
when computing the Chamfer distance, which we use only
for optimization. For evaluation, we modify its code to use
ordinary distances to compute Chamfer distance.

Garment Stage 1 Stage 2
β1 β2 β1 β2

G01 1 0.25 4 1
G02 1 0.05 4 1
G03 1 0.05 4 0.25
G04 1 0.25 4 1

Table A1. β1 and β2 for different garments.

Since the original ClothCap [9] pipeline works on 4D
scans while our dataset contains only static poses that are
not temporally continuous, we use the posed template T ′

as initialization to ClothCap [9]. For Neural Deformation
Pyramid (NDP) [5] which does not explicitly model human
poses, we also use T ′ as initialization. For Deep Shells [2]
which is an unsupervised learning pipeline, we retrain it on
our dataset using the official implementation and configura-
tions.
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Figure A1. Examples of garment scans in our dataset. We have also fitted a SMPL [6] model for each garment scan.

A3. Why Non-linearity is Necessary
In this section we provide a theoretical analysis of why

it is necessary to introduce non-linearity for refining intrin-
sic embedding alignment. For simplicity, let us consider 1D
manifolds, i.e., intervals in R. Suppose M = N = [0, 1]
are two 1D shapes to be aligned. The 1D LBO on M (with-
out discretization) is −d2/dx2, whose eigenfunctions with
homogeneous Neumann boundary conditions can be analyt-
ical computed as (same for N):

ϕM
k (x) = cos(kπx), λM

k = (πk)2, (A1)

where k = 0, 1, 2, · · · .
Suppose now the ground truth correspondence between

M and N is a non-isometric one, given by y = P (x) =
x2 (x ∈ M, y ∈ N). Let us take zM = ϕM

1 (x) and zN =
ϕN
1 (y) as their intrinsic embeddings. We now ask: Is it

possible to recover the point-to-point map y = P (x) = x2

through some functional map A(z)? In other words, does
there exist some intrinsic space transformation z 7→ A(z)
such that

A(zM ) = zN? (A2)

In fact, by plugging the expressions for zM and zN and
y = x2 into A(zM ) = zN , we can find the only A satisfying
the above conditions to be:

A(cos(πx)) = cos(πx2) (A3)

=⇒ A(z) = cos(π(cos−1(z)/π)2), z ∈ [−1, 1], (A4)

which is clearly non-linear. This 1D example demonstrates
that if we only compute a finite number of LBO eigenfunc-
tions for intrinsic embedding, there may not exist a linear
functional map that corresponds to a non-isometric defor-
mation. Therefore, non-linearity between intrinsic embed-
dings must be introduced.

The following theorem shows that these two aspects
(namely, the underlying point-to-point map being non-
isometric, and using only a small number of eigenfunctions
of the LBO) are indeed the root cause for introducing non-
linearity.

Theorem 1. Let M and N be two manifolds with LBO
eigenfunctions ϕM

k (x) and ϕN
k (y). Suppose each eigen-

value has multiplicity one. Let ΦM,K denote the (K +
1)-dimensional intrinsic embedding of M , i.e., we as-
sign to each x ∈ M the intrinsic coordinates zM (x) =
[ϕM

0 (x), ϕM
1 (x), · · · , ϕM

K (x)] ∈ RK+1. Let ΦN,K and
zN (y) be similarly defined for N . Suppose P : M →
N, x 7→ y is a point-to-point map. Then there exists a
linear functional map A : RK+1 → RK+1 such that
A(zM (x)) = zN (P (x)) for all x ∈ M if one of the fol-
lowing conditions is met:

1. P is an isometry.

2. K is large enough (possibly ∞) such that

span{ϕN
0 (P (x)), · · · , ϕN

K(P (x))}
⊂ span{ϕM

0 (x), · · · , ϕM
K (x)}. (A5)
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Proof. 1. It is well known that LBO eigenfunctions are
invariant under isometric transformations (see, e.g.,
[11]). Therefore, if P is strictly isometric, the LBO
eigenfunctions must be in one-to-one correspondence
(up to a sign change). The linear functional map A can
be chosen as a diagonal matrix with ±1 entries.

2. By the definition of Eq. (A5), there exist aij such that

ϕN
i (P (x)) =

K∑
j=0

aijϕ
M
j (x), (A6)

Then A can be defined as the linear transformation
given by the matrix (aij).

While the above theorem does not forbid the existence
of a linear functional map when P is non-isometric and
K is small, we find such cases to be quite rare in prac-
tice. As the theorem suggests, under the linear functional
map framework [7], one can generally only work with near-
isometric deformations (e.g., as-rigid-as-possible) or com-
pute a large number of eigenfunctions that nearly span the
whole function space. However, for garments, the under-
lying ground-truth correspondence can be highly non-rigid
and non-isometric. On the other hand, computing a large
number of eigenfunctions is a computationally expensive
task. To bypass these obstacles, our work employs a non-
linear neural deformation field for intrinsic fitting, which
allows accurately recovering the underlying non-isometric
point-to-point map with only 50 eigenfunctions.

A4. More Evaluation Results
A4.1. Comparisons

We present more qualitative comparison results in
Fig. A2. To visualize the geometric deformation, we ap-
ply a colored grid pattern to the source shape and observe
its distortion in the fitted results. Note that while Cloth-
Cap [9] can produce results that look correct in terms of
geometry and texture, the geometric distortion would still
be unnatural. Please also watch our supplementary video
for 360◦-view presentations.

A4.2. Ablation Studies

We present complete quantitative results in Table A2.
Since the garments in our dataset have very different char-
acteristics in terms of both geometry and texture, we list
the metrics and discuss the effect of different components
separately.

For the coarse stage, we evaluate the proposed intrin-
sic neural deformation field by replacing it with direct ver-
tex optimization (DVO-S1) and a coordinate-based neural

deformation field (CoordNet-S1). As Table A2 shows, us-
ing intrinsic features to define a deformation field allows us
to handle more difficult types of garments. More specif-
ically, this choice leads to superior performance for G02
(the knee-length coat), because we need to rely on the
geodesic continuity of intrinsic features to “pull open” the
seam at the lower part of G02, while other deformation
modules produce unnatural distortions (Fig. A3). Using
intrinsic features also allows the coarse stage deformation
to be robust to poorly initialized templates. As shown in
Fig. A4, an inaccurately estimated SMPL may lead to a self-
intersecting template initialization. Our intrinsic deforma-
tion network allows pulling apart the intersecting parts and
still achieves accurate alignment. Therefore, even though
DVO or coordinate-based neural fields can also achieve
good results for simpler garments (G01, G03 and G04), uti-
lizing intrinsic features is necessary for more difficult cases
as exhibited above.

For the refining stage, Table A2 shows that, compared
with linear ICP refinement (LR-S2) [7] or no refinement
(NR-S2) in the intrinsic space, our non-linear neural defor-
mation field can lead to better accuracy in both geometry
and texture. The improvement in texture alignment over
other choices is more obvious for G01 which contains rich
color patterns.

For utilizing texture color information, Table A2 shows
that not using texture (NoTex) can still lead to high geomet-
ric accuracy but with an observable drop in texture accu-
racy. It is interesting to note that even without using tex-
ture colors, our method still outperforms all baseline meth-
ods [2, 5, 9]. This suggests that even if our method is used
without color information, it can still produce high-quality
correspondences.

Please also watch our supplementary video for 360◦-
view presentations.
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Source M NDP Deep Shells ClothCap Ours Target N

Figure A2. More comparison results with NDP [5], Deep Shells [2] and ClothCap [9]. Aside from texture and geometry, we also exhibit a
colored grid pattern to visualize the geometric distortion.
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Garment Method Chamfer Dist. Cos. Sim. LPIPS-AlexNet LPIPS-VGG SSIM
(×10−3) ↓ ↑ (×10−2) ↓ (×10−2) ↓ ↑

G01

Ours 2.144 0.985 2.442 4.195 0.949
DVO-S1 2.142 0.985 2.459 4.218 0.948
CoordNet-S1 2.143 0.985 2.437 4.183 0.949
LR-S2 2.172 0.984 2.938 4.850 0.936
NR-S2 2.186 0.984 3.146 5.131 0.930
NoTex 2.156 0.984 4.562 6.737 0.904

G02

Ours 2.780 0.988 5.396 8.866 0.824
DVO-S1 2.899 0.985 8.327 10.868 0.813
CoordNet-S1 2.793 0.987 5.785 9.188 0.821
LR-S2 2.834 0.987 5.681 9.146 0.821
NR-S2 2.897 0.987 5.928 9.344 0.819
NoTex 2.783 0.988 5.616 9.097 0.821

G03

Ours 2.500 0.977 4.161 5.639 0.943
DVO-S1 2.525 0.976 4.773 6.201 0.938
CoordNet-S1 2.490 0.977 4.089 5.573 0.944
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G04

Ours 3.085 0.967 5.274 7.766 0.939
DVO-S1 3.058 0.967 5.763 8.157 0.935
CoordNet-S1 3.039 0.968 4.938 7.502 0.942
LR-S2 3.131 0.966 5.449 7.854 0.938
NR-S2 3.138 0.966 5.535 7.938 0.938
NoTex 3.039 0.968 5.758 8.060 0.936

Table A2. Quantitative results of ablation studies. We report the metrics for each garment separately since they have very different geometry
and texture characteristics. The best results are in boldface and the second best results are underlined.
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Figure A3. Ablation study on different modules.

6



After stage 1

After stage 2

Wrong SMPL

Initialized template T ′ DVO-S1 CoordNet-S1 Ours

Accurate SMPL

Target shape N

Figure A4. Using an intrinsic deformation network is robust to poor template initializations. Even if the initialization contains self-
intersections, our intrinsic deformation network allows pulling away the intersecting parts.
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