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This supplemental material is organized as follows. In
Section A, we give the details of pre-processing the Liquid
dataset [7]. In Section B, we discuss the limitation of the
Liquid dataset as referred to in the main paper. The data
collection efficiency is compared in Section C. The details
of the robotic experiments are illustrated in Section D. More
qualitative results are shown and discussed in Section E.
Additional examples are shown in our supplemental video.

A. Pre-processing of the Liquid Dataset

As the sequences of each trial on the Liquid dataset are
generated by the robot pouring the container, thus it con-
tains images of liquid and non-liquid. We thus design a
strategy to utilize the provided mask annotations for auto-
matically separating each sequence into images with liquid
and non-liquid. Concretely, we visualize the sum of anno-
tated pixels of liquid in each frame as in Fig. 1. We observe
that the number of pixels belonging to liquid will grow dur-
ing continuous pouring. Thus, we search the turning points
(orange and green ones in Fig. 1) on the curve. Finally, the
sequence is dived into two parts of liquid and non-liquid for
training and testing.

B. Limitation of Liquid Dataset

The UW Liquid Pouring dataset [7] is an useful dataset
in tasks of estimating liquid volume like the excellent
works [6, 7]. Nevertheless, it is not completely suitable for
our task, i.e., perceiving the liquid out-flowed from bottle-
neck. The reasons comes from two folds: (1) The annota-
tions in Liquid dataset contain liquid out-flowed from bot-
tleneck, and liquid stayed in the container. In our task, we
only focus and model the liquid out-flowed from bottleneck
for visual closed-up control. (2) The annotation quality of
some images are imperfect as in Fig 2. Some liquid regions
are unlabeled in original dataset, but our method can well
discover and focus on the such unlabeled regions of liquid,
thus this will influence the final evaluation of performance.

Tindicates corresponding author.
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Figure 1: The curve of pixel number of annotations per
frame in UW Liquid Pouring dataset [7]. The turning points
on the curve helps divide the sequences into two parts of im-
ages with liquid and non-liquid.

C. Efficiency of Data Collection

We compare the efficiency of our image-level labeled
data collection pipeline and that of pixel-wise annotation
pipeline. We labeled the coarse pixels annotation using the
PaddleLabel tools [2], and then using the Apple pencil [1]
(the mouse is hard to use as the liquid is long and thin) to
refine the labeled pixels. It takes nearly 2.5h for 200 im-
ages. In contrast, we easily obtain the image-level labeled
data in a semi-automatic manner within 10msn, which only
demands the human to put containers on the workspace of
the robot. The efficacy of our pipeline is 15 times faster
than that of pixel-wise annotation pipeline. Although these
works [5, 6, 7] utilize the thermal camera and heating water
to accelerate the efficacy off annotation, but it needs extra
calibration of thermal camera aligned to the RGB camera
and heating water. Additionally, the generated annotations
sometimes are imperfect as shown in Fig 2 and discussed
in Sec. B. Thus, our data collection pipeline is easy and
efficient, which do not rely on tedious human labor and ad-
ditional equipment.
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Ilustration of the limitation in the Liquid
dataset [7]. Some of the actual liquid regions are unlabeled
in the original provided annotations, while our method can
discover such small regions of liquid.

Figure 2:

D. Robotics Experiment Setup

We use six groups of source-target containers for robotic

experiments, and the as shown in Fig. 3. For each trial, the
source and target containers are placed randomly within the
camera’s field of view.
Pose Tracking. When the source container is rotated hor-
izontally to the ground, the pre-processing stage of object
segmentation in the method of Lin et al. [3] cannot detect
the object, rendering further pose estimation unavailable.
To address this, we employ a pseudo-tracking strategy to
calculate the pose of the source container using the robot’s
forward kinematics. Specifically, we assume that when the
source container is grasped by the robot, the object is at-
tached to the robot’s gripper. Therefore, the source con-
tainer’s pose is written as,

ATgrip . T(())bj — vaz)bj (1)

where Ty %7 is the initial object pose when the gripper ex-
actly touches and grasps this object at time to, and ATY"*P
is the relative transformation of gripper at time ¢,, versus
that at time ¢y. Finally, the tracking pose of the object at-
tached to the gripper (at time ,,) is denoted as 7%/,
Initial Pouring Point Calculation. The robot first grasps
the source container by using the pose estimator proposed
by Lin et al. [3]. Then the initial pouring point is calculated
by using the estimated pose and size as in Fig. 4.
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Figure 3: Different containers and liquids were used in our
experiments. We use six groups of source containers, target
containers, and liquids, individually.

Given the poses and sizes of both containers in
the robot’s base frame, ie., {R*"° t*7%s°"°} and
{ R 149t st9t} we simplify the calculation by only con-
sidering the 3-DoF translation and 3D size of containers for
in our experiments. The initial pouring point £ is calcu-
lated by,

th = tlot
th = tl9" — st9t /2 2)

t8 = t19' 4 s57¢ /2 + 519 /2 + b

where h is a margin of safety pouring height to avoid the
bottleneck of the source container colliding with that of the
target container if the containers are too close when pour-
ing. We set 1 as 3.5¢m in our experiment. ¢%, ¢f) and ¢% are
components of vectors tP.

Details of Dynamic Scenes. For the dynamic scenes, the
experimenter holds and moves the containers in linear mo-
tion and random motion as illustrated in Fig. 5. The dy-
namic scenes are very challenging, as the out-flowing liquid
has a certain speed in moving direction when the robot con-
tinuously adjusts the source containers to track the target
one. This demands real-time visual feedback to control the
position of the source container. Our experimental results
show our capability of real-time visual feedback to guaran-
tee the liquid dropped into the moving target containers.
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Figure 4: Illustration of initial pouring point calculation.
The narrows with red, green, and blue colors means the x,
y, and z axis, individually.
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Figure 5: Different motion types of the target container used
in our robotic experiment of dynamic scenes.

E. Qualitative Results

Here we provide more qualitative examples on the
dataset to show the qualitative evaluation. We show the in-
put RGB images and CAM results overplayed on the RGB
images on the UW Liquid Pouring (Fig. 6) and Pourlt!
(Fig. 7) datasets.
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Figure 6: More CAM visualization results of different methods on the Liquid dataset [5]. Note that the quality of AFA’s CAM
is similar to its segmented mask results, thus we only visualize CAM but not AFA segmented masks [4] for consistency of
visual contrast. The comparison results show that our CAM results focus more tightly on complete liquid region, with well
alignment of low-level boundaries.
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Figure 7a: More CAM visualization results of different methods on the Pourlt! dataset. Note that the quality of AFA’s CAM
is similar to its segmented mask results, thus we only visualize CAM but not AFA segmented masks [4] for consistency of
visual contrast. The comparison results show that our CAM results focus more tightly on complete liquid region, with well
alignment of low-level boundaries and generalization across novel scenes.
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Figure 7b: More CAM visualization results of different methods on the Pourlt! dataset (following the figure above). Note
that the quality of AFA’s CAM is similar to its segmented mask results, thus we only visualize CAM but not AFA segmented
masks [4] for consistency of visual contrast. The comparison results show that our CAM results focus more tightly on
complete liquid region, with well alignment of low-level boundaries and generalization across novel scenes.



