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Supplementary Material

A. Overview

This material provides quantitative and qualitative exper-
imental results, dataset and implementation details, and dis-
cussions that are supplementary to the main paper.

B. Dataset Details

The multi-sweep LiDAR point clouds for Waymo are
collected from 136 unique vehicle instances of Waymo
Open Dataset’s tracking data [8], while those for KITTI
are extracted from 233 unique vehicle instances of KITTI’s
tracking dataset [5]. In total, we extracted 3943 partial
point clouds from the 136 vehicle instances of Waymo and
4235 partial point clouds from the 233 vehicle instances
of KITTI. These raw multi-sweep point clouds are directly
used as model input to obtain experimental results on our
model and the state-of-the-art methods [7, 2, 3, 10]. When
performing inference, all partial point cloud frames from
the given instance are simultaneously passed into our model
as input.

To construct the ground truth stacked point cloud, we
first aggregate all partial point clouds within a multi-sweep
to generate a dense stacked point cloud. Since this stacked
point cloud contains unwanted noise, such as ground plane
points and points lying on the exterior or interior of the ve-
hicle surface, we perform statistical outlier removal on the
stacked point cloud, which computes the average distance
of a point from its neighbours and removes all points lying
farther away from their neighbours than average. Denois-
ing is essential for dataset processing since the presence
of noise in the ground truth shape can result in false pos-
itives and false negatives in model performance, whereby a
messy shape generated by a model that fits to the noise of
the ground truth is deemed high fidelity and a smooth shape
generated by a noise-robust model is deemed low fidelity.

C. Results on ShapeNetV2

We randomly preserve 300 vehicles from the car taxon-
omy of ShapeNetV2 [1] as the test dataset. The remainder
is used to train our network in stage one. Each vehicle in-
stance is comprised of 6 partial point clouds generated by
PCGen [6] under Waymo’s LiDAR parameters. Note that
the following results are generated solely using PCGen [6]
to sample partial point clouds and the use of other sampling
techniques (e.g., the approaches proposed in [7, 9]) would
yield different results on the same ShapeNetV2 dataset [1].

Metrics. Since ground truth shapes are readily available
in synthetic datasets such as ShapeNetV2 [1], we use Cham-
fer Distance (CD) [4] to evaluate the 3D reconstruction re-
sults. Following DeepSDF [7], we sample 30,000 points on
the surface of both the ground truth and reconstructed mesh.
Given two point sets, the CD is the sum of the squared dis-
tance of each point to the nearest point in the other point
set:

CD (X,Y ) =
∑
x∈X

min
y∈Y
‖x− y‖22 +

∑
y∈Y

min
x∈X
‖x− y‖22.

(1)
As outlined in the main paper, we only compare the re-

sults of our model with the best single-shot reconstruction
result, which is the mesh with the minimum CD among the
multiple single-shot reconstructed meshes.

Qualitative and Quantitative Comparison. The qualita-
tive and quantitative comparison of our approach against the
state-of-the-art methods (DeepSDF [7], C-DeepSDF [2],
MendNet [3], and AdaPoinTr [10]) are presented in Fig-
ure 1 and Table 1, respectively. Note that when testing on
ShapeNetV2 [1], since PCGen [6] is used to generate both
the training and test dataset, we only present Ours, in con-
trast with the comparison of Ours with Ours-VDC in the



Figure 1. Visual comparison with the state-of-the-art methods (DeepSDF [7], C-DeepSDF [2], MendNet [3], and AdaPoinTr [10]) on the
ShapeNetV2 [1] dataset.

main paper. The meshes generated by DeepSDF [7], C-
DeepSDF [2], and MendNet [3] show high fidelity com-
pared to their performance on real-world datasets, but still
show inferior performance to Ours. AdaPoinTr [10] also
produces shapes with decent fidelity, but the reconstructed
result is not watertight and expresses the shape with a lim-
ited resolution which fails to describe the continuous sur-
face of the vehicle.

Method \Metric CDmean ↓ CDmedian ↓
DeepSDF [7] 5.47 5.15

C-DeepSDF [2] 5.31 5.03
MendNet [3] 4.22 3.65

AdaPoinTr [10] 4.10 3.36
Ours 3.17 2.54

Table 1. Comparison of the proposed network with the state-of-
the-art approaches on ShapeNetV2 [1]. CD is multiplied by 103.

D. Comparison to a Non-Learning Approach

We now present an alternative non-learning approach,
computing the mean latent code, for the task of multi-sweep
3D vehicle reconstruction. As introduced in [7], linear in-
terpolation between two latent codes in the latent space can
also generate meaningful shape representations. Moreover,
averaging is a common method of linear interpolation used
for reducing error among multi-observation data. To this
end, we investigate the effect of computing the mean la-
tent code from the single-shot-based latent codes of a given
multi-sweep and using this mean latent code for mesh re-
construction. We present the case shown in Figure 2, where
two single-shot partial point clouds, PC 1 and PC 2, are used
to generate two latent codes, z1 and z2, and meshes, Mesh
1 and Mesh 2, respectively. We define the mean latent code
as zmean = 0.5(z1 + z2) and generate the corresponding
mesh, denoted by Mean. As shown, Mean is simply a uni-
form fusion of Mesh 1 and Mesh 2. Moreover, Mean is in-
ferior to Mesh 2, the best single-shot in this example, which
is also inferior to Ours, the result of our proposed model.

Figure 2. Comparison of the result of our approach to that of the
mean latent code on ShapeNetV2 [1]. The proposed network is
not fine-tuned.

Num of PCs ACDmean↓ ACDmedian↓
3 3.47 2.44
6 3.36 2.26
9 3.32 2.21

Table 2. Ablation study on Waymo [8] using different numbers of
point clouds per instance. ACD is multiplied by 103.

E. Effect of Number of Point Clouds

The number of frames corresponding to an individual ve-
hicle instance in Waymo [8] and KITTI [5] ranges up to
240 partial point clouds per instance. However, the vast
majority of instances only contain between 3 to 9 partial
point clouds. In this section, we investigate the relation-
ship between the number of partial point clouds provided
for each instance during stage two of training and overall
model performance. Table 2 presents the experimental re-
sults of providing different numbers of partial point clouds
to our model on Waymo [8]. As shown, our model perfor-
mance improves as the number of point clouds increases.
However, since generating the latent code for each partial
point cloud with DeepSDF [7] is a timely process (around
10 seconds), we choose 6 observations per instance as a
trade-off between performance and efficiency.

F. Effect of Number of Points Per Point Cloud

The number of points captured in a single frame of
Waymo [8] and KITTI [5] mostly falls into a range of 300
to 1000 points. Thus, we set the number of points per point
cloud as 256 in our framework for performing FPS. In this



Figure 3. Additional visualization results of MV-DeepSDF on the Waymo [8] and KITTI [5] datasets.

Figure 4. Visual comparison of MV-DeepSDF and DeepSDF [7] on Waymo [8]. Individual point clouds are given in the first row and their
corresponding reconstruction results from vanilla DeepSDF in the second row.

section, we investigate the relationship between the number
of points per point cloud during inference and model perfor-
mance. Table 3 presents the experimental results of varying
the number of points per point cloud on both DeepSDF and
our model with Waymo [8]. As shown, when the number of
points decreases, the performance of DeepSDF drops dra-
matically whereas our method holds steady.

Num of Points 256 128
Metric ACDmean ↓ ACDmedian ↓ ACDmean ↓ ACDmedian ↓

DeepSDF 6.26 5.81 12.52 8.51
Ours 3.36 2.26 3.47 2.64

Table 3. Ablation study on Waymo [8] using different numbers of
points per point cloud. ACD is multiplied by 103.

G. Visualization Results

Due to the page limitation of the main paper, we present
more visualization results of our model in Figure 3. Addi-
tionally, to evidently present the significant improvement of
our method over the baseline vanilla DeepSDF [7], a visual
comparison on Waymo [8] is given in Figure 4.
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