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In this supplementary document, we provide more im-
plementation details in Sec. A, describe more details about
the light-weight ToF sensor we used in Sec. B, more details
on the evaluation in Sec. C, and show more qualitative re-
sults in Sec. D. Finally, we discuss our limitations in Sec. E.
More qualitative results can be found in our supplementary
video.

A. More Implementation Details
A.1. Multi-Modal Implicit Scene Representation

As described in Sec. 3.2 of our main paper, we propose a
new multi-model implicit scene representation with multi-
level grid features. In the multi-model feature grids, the
dimension of features for the geometry grid at each level is
4. Since we only encode color at the finest level, color fea-
tures are encoded with a dimension of 6. We use the dense
grid from tiny-cuda-nn [2] library to implement the multi-
level feature grids for acceleration. For both geometry and
color features, we use small MLPs with two hidden layers
consisting of 32 neurons as decoders.

The input dimension of the geometry decoder is 16, cor-
responding to the total geometry feature size. When de-
coding pixel-level depth, all the input neurons are active;
while decoding zone-level depth, only 8 of the 16 neurons
corresponding to the zone-level features are active. The in-
put dimension of the RGB decoder is 9, including 6 for the
color features extracted from the feature grid and 3 for the
view direction vector.

A.2. Loss Function

In this section, we provide more details of the SDF su-
pervision and the SDF regularization terms used in the map-
ping process.
SDF Supervision Term. Apart from supervising the ren-
dered depth, we also supervise the intermediate SDF predic-
tion. Following [3, 7, 1], we approximate the ground-truth
SDF supervision b(x) = D̃[u, v] − d based on our depth
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predictions. It is noticeable that this approximation is an up-
per bound of the ground-truth SDF value. For near-surface
points, the differences between the ground-truth SDF value
and the approximation are expected to be smaller. As a re-
sult, we apply the following near-surface loss for the near-
surface points (|D̃[u, v]− d| <= t) as in [3]:

ℓsdf (x) = |ϕpix(x)− b(x)|, (1)

where ϕpix represents the pixel-level SDF value of point x
as mentioned in Sec. 3.2 of our main paper. The truncation
threshold t is a hyper-parameter and we set it to 16cm. For
points far from the surface (|D̃[u, v]− d| > t), we apply the
following loss to encourage free space prediction as [3]:

ℓfs(x) = max
(
0, e−βϕpix(x) − 1, ϕpix(x)− b(x)

)
, (2)

where β is a hyper-parameter controlling the exponential
penalty term when the SDF prediction is negative, and we
set β = 5 in our experiment.
SDF Regularization Term. To alleviate the ill-posed prob-
lem in under-constrained regions, we employ two additional
regularization terms on the SDF prediction: Eikonal regu-
larization ℓeik and smoothness regularization ℓsmooth.

Eikonal regularization is widely used in previous
works [8, 3] , encouraging the prediction to approximate a
signed distance function. This regularization can help prop-
agate the SDF field from the near-surface regions to free
space. For a given point x, the Eikonal regularization is
applied via the loss ℓeik:

ℓeik(x) = (1− ||∇ϕpix(x)||)2. (3)

Since we do not have a high-quality depth map as input
like [10, 5], we also add a smoothness regularization that
encourages nearby points to have similar normal direction
as in [7]:

ℓsmooth(x) = ||∇ϕpix(x)−∇ϕpix(x+ ϵ)||2, (4)

where ϵ is a small perturbation with a random direction and
length of δs. We set δs to 4mm empirically.



VL53L5CX(ours) Apple LiDAR
Cost $2-3 ∼$20

Resolution 8×8 256×192
Power 0.2W 3-4W

Main Usage Autofocus AR & VR
Table A. Comparison with Apple LiDAR.

Figure A. VL53L5CX ToF Sensor. The sensor is extremely small
in size (6.4 × 3.0 × 1.5 mm) and runs at a fairly low power con-
sumption (about 200mW). We compare the size of the VL53L5CX
sensor with a one cent euro coin in the figure.

Experimental Settings. We use the first 60 frames to do
initialization. During the initialization process, the frames
are sequentially added to the optimization process every
Na = 100 iterations, and after all frames are added, an ex-
tra Ne = 300 iterations of optimization are performed. We
set the number of tracking iterations Nt to 50, the number
of mapping iterations Nm to 150, the number of sampling
pixels M to 5000, the number of sampling zones Z to 500,
the number of neighbor frames Nn to 60, the window size
Ws to 30 and implement a hierarchical sampling strategy
similar to NeuS [8] to obtain the sampling points along the
ray. We first sample Nc = 96 coarse samples and add 12
samples at each step based on weights computed from the
previously sampled points.

B. Light-Weight ToF Sensor Details
In this paper, we use ST VL53L5CX [4] (shown in

Fig. A, denoted as L5) as a typical representative of light-
weight ToF sensors. Comparing with common commodity
level depth sensors (e.g. Intel RealSense, apple LiDAR,
etc.), light-weight ToF sensors are a magnitude lower in
power consumption and price. We compare the basic infor-
mation between L5 and apple LiDAR in Table A. L5 out-
puts depth in the resolution of 8 × 8, and each measures
the depth distribution in a large zone. Its diagonal field-of-
view (FoV) is 63◦, similar to common monocular cameras.
Unlike the conventional ToF sensor that provides per-pixel
high-resolution (usually higher than 0.03 megapixels) depth
map, L5 provides depth distribution measurements within
zones in an extremely low resolution.

L5 emits infrared rays and measures depth based on
the time taken for the wave to bounce back to the emitter.
However, due to the light-weight electronic design, L5 is

only able to give statistical information about the depth in
a large zone. The depth distribution is initially obtained
by counting the number of photons returned in each dis-
cretized range of time and then fitted with a Gaussian dis-
tribution model to compress the raw information due to its
tight bandwidth limit.

For each zone, L5 also returns a status code to show
whether the measurement in that zone is valid. If the
number of photons received in a zone is too small or the
measurements are unstable, the corresponding zone will be
marked as invalid. More details can be found on STMicro-
electronics’s webpage1.

C. Evaluation Details
C.1. Mesh Culling

Implicit methods can usually complete the scene geom-
etry for unseen regions. For a fair comparison between im-
plicit and explicit methods, we cull surfaces that are not ob-
served inside any camera frustums or occluded by other ob-
jects.

C.2. Depth Metrics

C.3. Reconstruction Metrics

We evaluate the quality of the scene reconstruction us-
ing the following standard metrics where p and p∗ are the
vertices in generated mesh P and GT mesh P ∗ respectively:

• Accuracy (Acc.):

1

|P |
∑
p∈P

minp∗∈P∗ ∥p− p∗∥. (5)

• Completeness (Comp.):

1

|P ∗|
∑

p∗∈P∗

minp∈P ∥p− p∗∥. (6)

• Precision (Prec.):

1

|P |
∑
p∈P

minp∗∈P∗ ∥p− p∗∥ < 0.05. (7)

• Recall (Recal.):

1

|P ∗|
∑

p∗∈P∗

minp∈P ∥p− p∗∥ < 0.05. (8)

• F-score:
2× Prec.× Recal.

Prec.+Recal.
. (9)

1https://www.st.com/content/st com/en/premium-content/premium-
content-time-of-flight.html



Figure B. More Reconstruction Results. We show the final mesh generated by NICE-SLAM [10], ElasticFusion [9] and our method. The
mesh is visualized with the vertex normal. Compared to other methods, our method recover cleaner and sharper scene geometry.

In general, F-score is considered as the most proper metric
to evaluate the quality of the scene reconstruction [6] since
both the accuracy and completeness of the reconstruction
are considered.

We evaluate the performance of the depth prediction us-
ing the following standard metrics where d̂i represents pre-
dicted depth, di represents ground truth depth, and N is the
number of valid ground truth values:

• Threshold Accuracy (δi with i=1,2,3):∑N
i=1[max( d̂i

di
, di

d̂i
) < 1.25i]

N
, (10)

where [] denotes Iverson brackets.

• Mean Absolute Relative Error (REL):

1

N

N∑
i=1

|d̂i − di|
di

. (11)

• Root Mean Square Error (RMSE):√√√√ 1

N

N∑
i=1

(d̂i − di)2. (12)

In the ablation study about the temporal filtering tech-
nique for depth prediction, we do the evaluation separately
for normal and hard cases. Here, we give a detailed defi-
nition of the division criteria. For the normal case, the raw
L5 signal is of normal quality, leading to relatively accurate

Figure C. Geometry Forecast. The white-colored area is the re-
gion with observations, while the green-colored area represents the
unseen but forecasted region. It is noticeable that our method can
generate reasonable mesh even in the unseen region.

depth prediction. While for the hard case, the raw L5 signal
is noisy or has large amounts of missing data. We classify
a prediction as a normal case if its RMSE error is less than
0.4; otherwise, we regard it as a hard case.



Figure D. Comparison to a Smartphone Scan.

D. More Qualitative Results
Mesh Visualization with Vertex Normal. To better high-
light the differences in reconstruction quality, we provide
additional visualizations in Fig. B using the vertex normal
to color the mesh. It is noticeable that our approach out-
performs the others and produces high-quality scene recon-
struction results.

Geometry Forecast. Our method is able to make reason-
able predictions in unseen regions thanks to the multi-modal
implicit scene representation. As shown in Fig. C, the hole
in the floor is well filled, and the walls are correctly ex-
panded to unobserved regions.

Comparison to a Smartphone Scan. We used an iPad Pro
(with “3D Scanner App”) to re-scan two testing scenes un-
der as closely identical conditions as possible to ours. As
shown in Fig. D, our method can achieve reconstruction re-
sults comparable to the iPad Pro using a much cheaper light-
weight ToF and outperforms iPad Pro on thin objects thanks
to the multi-modal implicit scene representation.

E. Limitations
Firstly, the range of a light-weight ToF sensor is usually

limited to several meters and the sunlight has a strong in-
terference on the sensor, so our method currently focuses
on indoor scenes. We plan to further improve the system to
overcome the limitation of ToF sensors in outdoor scenar-
ios. Secondly, the computational overhead of the proposed
method is still relatively high for mobile platforms. In fu-
ture work, we plan to further reduce the computational bur-
den and make it efficient enough to run on mobile robots.
At last, we also plan to add semantic information into our
system for high-level scene understanding.
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