
Supplementary Material:
Multi-grained Temporal Prototype Learning for Few-shot Video Object

Segmentation

Nian Liu1 Kepan Nan2 Wangbo Zhao3 Yuanwei Liu2 Xiwen Yao2†

Salman Khan1,4 Hisham Cholakkal1 Rao Muhammad Anwer1 Junwei Han2 Fahad Shahbaz Khan1,5

1 Mohamed bin Zayed University of Artificial Intelligence 2 Northwestern Polytechnical University
3 National University of Singapore

4Australian National University 5CVL, Linköping University

Setting Mask Selection J -Mean F-Mean mVC7

w/o Memory - - 62.5 60.3 62.1
Upper Bound GT Rand. 65.8 64.1 64.4
Lower Bound Pred. Rand. 62.2 61.0 62.3

Ours Pred. RMS 63.5 61.9 62.8

Table 1. Necessity of reliable memory selection. “GT”: Using
ground truth memory masks Om during testing. “Pred.”: Using
predicted memory masks Õm during testing. “Rand.”: Random
selection. “RMS”: our reliable memory selection.

1. Necessity of Reliable Memory Selection

We conduct experiments to verify the necessity of us-
ing memory and reliable memory information for FSVOS,
and the results are illustrated in Table 1. We define an up-
per bound of the memory information usage by randomly
selecting Tm memory frames and using their ground truth
masks Om for memory prototype learning during testing.
Meanwhile, adopting predicted masks Õm for the randomly
selected memory is the lower bound. We find that the upper
bound setting achieves significant performance improvement
compared with the “w/o Memory” setting, demonstrating the
great potential of using memory prototype learning. How-
ever, comparing the lower bound design with “w/o Memory”,
we find that when using predicted masks for memory, simple
random selection can not guarantee performance improve-
ment due to noisy masks. This also shows the difference
between FSVOS and semi-supervised VOS, in which usually
using memory information definitely brings performance
gain. This encourages us to design our reliable memory
selection method (last row), which effectively improves the
model performance. However, we also find that its perfor-
mance is still largely behind the upper bound design. Hence,
better memory usage methods should be explored in future
works.
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Figure 1. Performance and speed comparison of using different
memory sizes.

2. Ablation Study on Memory Size
Since we introduce Tm historical frames for providing

memory guidance information, we conduct experiments of
using different memory size Tm during inference for our
VIPMT model, and report results in Figure 1. When using
Tm = 0 memory frames, we simply remove the memory
prototype.

The figure shows that simply introducing more memory
frames can bring progressive improvements on the mVC7

metric, which measures temporal prediction consistency
among long-range adjacent frames. However, when Tm

reaches 5, more temporal information brings little influence
on metric J and even degrades the performance on metric
F , which demonstrates that five historical frames can pro-



vide enough memory information for our model while more
frames may simply provide temporal redundancies, which is
similar to the findings in [5].

Intuitively, more memory frames also cause larger com-
putational costs. Hence, we also provide average FPS on
four folds, denoted as “mFPS”, of different memory settings
in Figure 1. We find that FPS drops gradually when using
more frames, especially when we change the memory size
from 5 to 10. By comprehensively considering the trade-off
between speed and performance, we consider 5 as the best
setting and use it in our final model to get good performance
as well as fast segmentation speed.

3. More Analysis on the Necessity of Using
Structural Similarity Maps

We conduct experiments on our IoUNet to verify the ne-
cessity of our proposed structural similarity maps (SSM). We
report mean results of mean absolute error (MAE) and ac-
curacy for IoU prediction on the four folds of YouTube-VIS
for using SSM or not in Table 2. The accuracy is computed
based on Tab. 7 of our paper. We compute the accuracy of
predicting each frame’s IoU is larger than the threshold or
not (i.e., binary classification) and report the average accu-
racy of varying thresholds (0.5 to 0.9). The results clearly
show that using SSM leads to more accurate IoU prediction.

w/o SSM w SSM

MAE 0.236 0.218
Accuracy 0.686 0.710

Table 2. Experimental results of MAE and accuracy for IoU
prediction. SSM means the proposed structural similarity maps.

4. Model Runtime Comparison
We report inference speed (on a single A100 GPU) com-

parison of different methods in Table 3. Besides our baseline
IPMT model [6] and two existing FSVOS methods, i.e.,
[1, 7], we also include the three compared semi-supervised
VOS methods in Tab. 3 of our paper for comparison, i.e.
STCN [3], XMem [2], and RDE-VOS [4]. We can find
that our VIPMT is only 9% slower than IPMT and obtains
comparative speed compared to TTI.

Model VIPMT IPMT DAN TTI
IPMT IPMT IPMT

+STCN +XMem +RDE-VOS

FPS 39.04 43.13 77.53 40.35 66.99 66.48 49.51

Table 3. Runtime Comparison.

5. Prototype Distribution Comparison
Since our baseline IPMT is motivated by reducing the

gap between support and query distribution (see Fig.1 and
Tab. 7 in the IPMT paper [6]), it is expected that VIPMT

Fold-1 Fold-2 Fold-3 Fold-4 Mean

Dqs 1.600 2.012 0.905 2.077 1.649
Dsi 1.466 1.579 0.686 1.691 1.356
Dqi 1.364 1.088 0.669 0.989 1.028

Table 4. Intra-class diversity measured by Euclidean distances
among the query, support, and intermediate prototypes of four
folds on YouTube-VIS. Dqs means the distance between the origi-
nal query and support. Dqi and Dsi denote the query-intermediate
distance and support-intermediate distance after using VIPMT, re-
spectively.

should have the similar property. We follow Tab. 7 in the
IPMT paper and report the distribution gap measured by
Euclidean distances among the query, support, and the final
frame-level intermediate (Gfi

5 ) prototypes on the four folds
of YouTube-VIS in Table 4. It shows that the distribution
distances after using VIPMT (query-intermediate distance
Dqi and support-intermediate distance Dsi) are smaller than
those of before using it (query-support distance Dqs).

6. More Visual Comparison with State-of-the-
art Methods

We give more visual comparison results of our VIPMT
model against state-of-the-art methods DAN[1] and TTI[7]
in a video file. It shows that our VIPMT can handle many
challenging scenarios well, i.e., big objects, fast moving
objects, multiple objects, cluttered backgrounds, etc, while
DAN and TTI are heavily disturbed in these scenarios.
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