
Real-Time Neural Rasterization for Large Scenes
Supplementary Material

Jeffrey Yunfan Liu1,3† Yun Chen1,2* Ze Yang1,2∗ Jingkang Wang1,2

Sivabalan Manivasagam1,2 Raquel Urtasun1,2

1Waabi 2University of Toronto 3University of Waterloo
{jliu, ychen, zyang, jwang, siva, urtasun}@waabi.ai

Abstract

This supplementary material contains comprehensive details regarding our proposed NeuRas method and the baselines,
experiment setting, additional results, and limitations of our method. We first describe the implementation details of our
approach in Sec. 1. Then we provide the additional implementation details for the baseline methods, along with the modi-
fications made to suit our experimental settings in Sec. 2. In Sec. 3, we provide more details for the experimental settings.
In Sec. 4 we show additional qualitative results and ablations. Finally, we analyze the limitations and future works of our
method in Sec. 5. Please refer to our project page https://waabi.ai/neuras/ for video results on driving scenes as
well as drone scenes.

1. NeuRas Implementation Details
1.1. Scene Representation

Foreground mesh reconstruction: NeuRas takes a geometry scaffold foreground mesh as input. For scene mesh recon-
struction on PandaSet [16], we train UniSim [17] on each driving scene using both front-facing camera images and the 360◦

spinning LiDAR point clouds. Unisim [17] leverages the LiDAR information to perform efficient ray-marching and adopts
a signed distance function (SDF) representation to model the scene geometry. The SDF representation is regularized with
an Eikonal loss [3], which helps the model learn a smooth zero level set. Finally, we use Marching Cubes [6] to extract the
mesh from the learned SDF volume .

Foreground mesh simplification: The reconstructed mesh obtained from a neural representation could contain over tens of
millions of triangle faces to model the detailed geometry, as it is not optimized to represent the mesh cleanly and compactly.
In order to reduce computational cost and enhance the UV texture mapping quality, we perform quadric mesh decimation [2]
to simplify the mesh while preserving essential structure. Subsequently, we perform face culling to eliminate non-visible
triangle faces. The face culling is implemented in OpenGL by rasterizing gl PrimitiveID from each of the source
camera poses.

Neural texture map creation: To generate a neural texture map for the foreground mesh, we leverage a UV map generation
tool [11] to unfold the mesh and derive the UV mapping for each mesh vertex. Based on the generated UV mapping, we
initiate a learnable UV feature map T ∈ RV×U×D to represent the scene appearance covered by the mesh. By using a neural
texture map instead of an RGB texture map, we can effectively model view-dependent effects during the rendering process.

Neural skyboxes: To learn far-away regions for the large scene, we represent distant regions with neural skyboxes. We
utilize 6 neural skyboxes, with the same dimensions as the foreground bounding box (e.g. 300 × 80 × 100 m for PandaSet)

*Indicates equal contribution. †Work done while an intern at Waabi.

1

https://waabi.ai/neuras/


For each neural skybox, we initialize 6 learnable neural texture maps for each face of the box to represent the opacity and
appearance of the skybox, and each neural texture map S ∈ RV×U×D corresponds to one face of the skybox.

Training time: We train the model on an single A5000 GPU. It takes 3 hours to train the model. The training memory is
approximately 22 gigabytes.

1.2. Interactive Rendering

NeuRas can achieve interactive, real-time rendering thanks to its mesh, skyboxes, and UV mapping representations being
directly compatible with the OpenGL framework. We implement the two MLP shaders as fragment shaders in OpenGL.
During each rendering, we first rasterize the mesh and skyboxes to screen space as a set of fragments. The fragment shader
then maps each fragment’s features to the opacity value and view-dependant RGB color. Finally we sort the scene mesh and
skyboxes by depth and perform alpha composition to synthesize the final RGB rendering.

2. Baseline Implementation Details
2.1. Free View Synthesis (FVS)

One key component of FVS is that it requires a proxy geometry to perform warping. Instead of using COLMAP to perform
structure-from-motion as in the original paper, we take advantage of the fact that the data collection platform records accurate
LiDAR depth information for the scene. For the static scene, we aggregate LiDAR points across all frames with dynamic
points removed and then create triangle surfels for them. We first estimate per-point normals from 200 nearest neighbors,
and then we downsample the points into 4cm3 voxels [22]. After that, triangle surfels are created with a 5cm radius. This
includes static vehicles. To enhance the photorealism of the rendered images, we also add the a adversarial loss which helps
produce higher quality results.

To render a target image, a few source images need to be selected. During training, we randomly select from nearby frames
(10 frames before and 10 frames after). To test the interpolation during inference, we select the 2 most nearby frames. To
test the lane shift, we select every 4 frames starting from 12 frames before to 4 frames after current frame. We heuristically
tried multiple settings and found this setting usually achieves better balance between performance and efficiency. Fewer
source images will result in images with large unseen region, and the network may fail to in-paint it. More source images
may produce blurry results because of geometry misalignment and runs out-of-memory on the GPU. The FVS is trained on
2 A5000 GPUs with learning rate 0.0001, batch size 8 for 50000 iterations. Images are cropped to 256× 256 patches during
training.

2.2. Multi-View Warping

The multi-view warping technique utilizes the same geometric proxy as FVS. The process involves rendering the depth of
the target view using the geometric proxy, followed by selecting a set of source images with camera poses that are in close
proximity to the target view, and rendering their respective depths. Any distant regions in the scene, such as the sky, are filled
with a large value, typically 65535. Subsequently, the source images are warped to the target view using both the depth and
extrinsics to find the correspondence. The resulting set of warped images is then blended together to generate a final output
image. Each warped image is ranked based on its distance to the target pose, and for each pixel in the output image, only the
source pixel with the shortest distance to the target view is retained.

2.3. ENeRF

ENeRF builds a cascade cost volume to predict the coarse geometry of the scene thus enabling efficient depth-guided
sampling. We crop the image to 1920 × 1056 during training and inference as CNN requires the image dimension can be
divided by 32. We trained the model from scratch on PandaSet Log 53 for 50K iterations using official repository 1. It takes
around one day with 2× A5000. Empirically, we find this model performs better compared to using the released DTU model
and finetuning. We hypothesize this is because the DTU camera distributions are significantly different from driving scenes.
During training, we select two or three source images with closest viewpoints with a probability of 0.9 and 0.1. We choose
two source images for fast inference and validate on all 9 logs.

1https://github.com/zju3dv/ENeRF

2



NeuRasENeRFInstant-NGPGround Truth Unisim

FPS 121FPS 3.20 FPS 5.10FPS 1.59

FPS 118FPS 5.10FPS 5.08FPS 1.55

FPS 3.25FPS 1.54 FPS 134FPS 5.10

FPS 2.05FPS 1.59 FPS 114FPS 5.10

Figure 1. Qualitative comparison on driving scenes. We show rendering results in testing frames.

2.4. Instant-NGP

Instant-NGP [9] achieves state-of-the-art NeRF rendering by introducing an efficient hash encoding, accelerated ray
sampling and fully fused MLPs. In our experiments, we scale the PandaSet scenes to fully occupy the unit cube and set
aabb scale as 32 to handle the background regions (e.g., far-away buildings and sky) outside the unit cube. We tuned
aabb scale to be 1, 2, 4, 8, 16, 32, 64 and find 32 leads to the best performance. The model is trained for 20K iterations
and converges on the training views. However, we find there are obvious artifacts including floating particles and large miss-
ing regions on the ground. This is due to the radiance-geometry ambiguity [21] and limited viewpoints that are sparse and far
apart in the driving scenarios compared to dense indoor scenes. Therefore, to improve the geometry for better extrapolation
(e.g., lane shift), we enhance the original method with LiDAR depth supervision. Specifically, we aggregate the recorded
LiDAR data and create a surfel triangle representation. We also enable the near-surface sampling and early ray termination
mechanism in CUDA that accelerate learning and inference. We follow the same surfel asset generation pipeline as stated
in the implementation of FVS. We follow official instructions to extract good-quality mesh from instant-NGP models. It is
known that the following factors could affect reconstruction quality. Modeling large scenes using hash-encoding may lead to

3



Instant-NGP NeuRasGround Truth Multi-view WarpingUnism

FPS 467FPS 65.0FPS 5.51FPS 5.10

FPS 466FPS 65.0FPS 7.91FPS 5.06

FPS 462FPS 65.0FPS 8.70FPS 4.69

Figure 2. Qualitative comparison on drone scenes. We show rendering results in testing frames.

more collisions, and surface regularization is needed for smoother surface reconstruction. Improving these aspects requires
additional efforts and remains an open research problem. We then use the surfel mesh representation to render a depth image
at each camera training viewpoint. For BlendedMVS, we normalizes the scenes to occupy the unit cube and set aabb scale
to be 8. The model is trained for 100K iterations. Note that no depth supervision is used for BlendedMVS. We use the default
model on two datasets except for using a large hashmap log2 hashmap size = 22.

2.5. UniSim

UniSim [17] is a neural sensor simulator that takes a set of camera images and LiDAR point cloud from a data collection
platform, and then converts them into a digital twin that can be manipulated. It achieves the state-of-the-art results for
synthesizing new views and scenarios on self-driving datasets [16]. UniSim represent the 3D scene as the neural feature
fields, which are parameterized by multi-resolution feature grids. Given the camera viewpoint and intrinsics, UniSim first
perform volume rendering to create an image feature map, then it leverages a 2D CNN network to take the feature map as
input and output the RGB image. The CNN network allows for volume rendering the feature map at a lower resolution
and upsampling it to full resolution, this can significantly reduces the amount of computation required for ray queries and
radiance computation. During the volume rendering process, UniSim also utilizes geometry priors from LiDAR observations
and sparsifies the features grids to reduce the computation cost. UniSim is trained with image photometric consistency loss
and perceptual loss. In addition to the image loss, it also leverages the LiDAR point cloud to supervise the scene geometry
and employs two surface regularizers to ensure the model learns a smooth surface for geometry modelling. Dynamic actor

4



Original Observation

ENeRF (lane shift) Multi-view Warping (lane shift) NeuRas (lane shift)

Unisim (lane shift) Instant-NGP (lane shift)

Figure 3. Extrapolation comparison on driving scenes. We show lane shift results comparison on driving scenes.

MLP shader w/o viewdirNo MLP MLP shader w viewdirOriginal Observation

Figure 4. Effects of MLP shader. The MLP shader aids in improving the realism of view-dependent results (see the vehicle windows),
while also mitigating artifacts in the sky.

Original Observation Without VQ (lane shift) With VQ (lane shift)

Figure 5. Effects of vector quantization (VQ). The vector quantization improves extrapolation results and also reduces offline storage.

models and adversarial training are not included in our setting. For each scene, we trained UniSim for each scene using
a single A5000 GPU for 20k iterations, approximately 1.7 hours. The Adam optimizer was used to train UniSim, with a
learning rate of 0.001 for the CNN and 0.01 for the neural feature fields. To ensure optimal training, we used exponential
learning rate decay to gradually decrease the learning rate by 0.1 throughout the entire training process.

5



Methods PSNR↑ SSIM↑ LPIPS↓
W/o MLP shader 22.53 0.780 0.184
W/ MLP shader 24.19 0.790 0.176

Table 1. Ablation on using MLP shader on BlendedMVS. The view-dependant MLP shader helps to improve the photorealism. Ablation
is conducted on the BlendedMVS dataset.

3. Experiment Details
3.1. Driving Scene Dataset

We conduct experiments on the PandaSet [16] dataset to evaluate self-driving scenes. We use 50 snippets of urban driving
scenes captured in San Francisco. Each snippet includes 80 frames (1080×1920 resolution) that last for 8 seconds and cover
an area of approximately 300× 80 square meters. To quantitatively evaluate our approach against baseline methods that are
computationally expensive to train, we selected 9 scenes that have few dynamic actors: 021, 027, 028, 029, 038,
039, 040, 053, 055, 056.

3.2. Drone Scene Dataset

To evaluate drone scenes, we conduct experiments on the BlendedMVS [19] dataset, which includes a variety of small-
scale objects and large-scale outdoor scenes. The five large scenes selected for evaluation are 58eaf1513353456af3a1682a,
5bbb6eb2ea1cfa39f1af7e0c, 5b08286b2775267d5b0634ba, 5b69cc0cb44b61786eb959bf
and 5b6eff8b67b396324c5b2672. Regarding the UV, we have employed a resolution of 4096×4096 for four of the
logs, whereas the fifth log (5bbb) features a significantly larger scene with a camera positioned closer to the mesh, prompting
us to adopt an 8192x8192 resolution for this particular log. We do not use skyboxes for the drone scenes, since they usually
only encompass a small fraction of the footage captured. Additional, due to the opaque mesh we use, we are not good at
model fog, smoke, window and water .

3.3. NeRF Synthetic Dataset

We encounter challenges when attempting to apply real-time rendering methods like SNeRG [4], PlenOctrees [20], and
MobileNeRF [1] to large-scale outdoor scenes and obtain satisfactory results. Therefore we compared our method to these
approaches using object-level scenes from the NeRF synthetic dataset [8]. We choose two examples to evaluate the model
performance: Lego and Chair examples. We run Voxurf [15] follow the official repository 2 to extract the geometry
scaffold for running our method. The setting is the same, except that we change the MLP to be 5 layers with 16 hidden units
to better handle the significant view dependant effects on the dataset. Besides, we set perceptual loss weight to be 0.0001, as
they seems insignificant in the synthetic dataset.

4. Additional Results and Analysis
4.1. Ablation Study

MLP shader ablation: Fig. 4 shows qualitative comparison on different shaders. The comparisons are conducted under 3
settings: 1) No MLP, where the scene appearance is represented using an RGB texture map. 2) MLP-shader without view
direction, where the MLP does not take the view direction as input and therefore cannot model view-dependent appearance.
3) MLP-shader with view direction, which is the default setting in the main paper. It can be seen from the comparisons that
using an MLP-shader can enhance realism in generating view-dependent results, as well as compensate for artifacts in the
scene. Besides the quantitative ablation on single log in Table 3 in the main paper, we further conduct ablation on all logs on
BlendedMVS, as shows in Table 1, using MLP shader consistency improve the realism.

Vector quantization (VQ) ablation: Fig. 5 shows a visual training a model with and without vector quantization. It can be
seen from the figure that vector quantization helps to regularize the neural texture maps, leading to improvement in rendering
quality in extrapolation viewpoints. For quantitative analysis, please refer to Table 4 in the main paper.

2https://github.com/wutong16/Voxurf

6



4.2. Additional NVS Results on Large-scale Scenes

We show additional novel view synthesis results in Fig. 1 for PandaSet and Fig. 2 for BlendedMVS large-scale scenes,
respectively. We also show qualitative results for extrapolation setting (Lane Shift) in Fig. 3. Our NeuRas approach captures
fine-grained details and achieve comparable or superior visual realism when compared to the baseline approaches, while
being significant faster (80× faster than UniSim, and 40× faster than Instant-NGP). Our approach strikes the best trade-off
between rendering quality and rendering speed.

5. Failure cases and Future Works
While NeuRas is capable of producing photo-realistic results, there is still room for potential improvements in some

scenarios. NeuRas is not able to effectively represent delicate and narrow structures, such as powerlines against the sky.
Moreover, on occasion, conspicuous artifacts have been detected at the interface of the background skyboxes and the volume.
Also, at high zoom levels, we experience a loss of detail. However, future work involving the use of mipmap could potentially
resolve this issue. We hope that future works on dynamic actor modelling [10, 17], material modelling [12, 18, 14] and
extensions to other sensors such as LiDAR [7, 13, 17, 5] could further enhance the capabilities of NeuRas system for scalable
data-driven sensor simulation.

References
[1] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilenerf: Exploiting the polygon rasterization pipeline

for efficient neural field rendering on mobile architectures. arXiv, 2022. 6
[2] Michael Garland and Paul S Heckbert. Surface simplification using quadric error metrics. In Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, pages 209–216, 1997. 1
[3] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regularization for learning shapes. ICML,

2020. 1
[4] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul Debevec. Baking neural radiance fields for real-time

view synthesis. arXiv, 2021. 6
[5] Shengyu Huang, Zan Gojcic, Zian Wang, Francis Williams, Yoni Kasten, Sanja Fidler, Konrad Schindler, and Or Litany. Neural lidar

fields for novel view synthesis. arXiv preprint, 2023. 7
[6] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction algorithm. ACM siggraph

computer graphics, 21(4):163–169, 1987. 1
[7] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong, Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Bin Yang, Wei-Chiu Ma,

and Raquel Urtasun. Lidarsim: Realistic lidar simulation by leveraging the real world. In CVPR, 2020. 7
[8] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing

scenes as neural radiance fields for view synthesis. ECCV, 2020. 6
[9] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash

encoding. 2022. 3
[10] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural scene graphs for dynamic scenes. CVPR, 2021. 7
[11] John C. Perry. xatlas: A c++11 library for texture atlas generation. https://github.com/jpcy/xatlas, 2018. GitHub

repository. 1
[12] Jingkang Wang, Sivabalan Manivasagam, Yun Chen, Ze Yang, Ioan Andrei Bârsan, Anqi Joyce Yang, Wei-Chiu Ma, and Raquel

Urtasun. CADSim: Robust and scalable in-the-wild 3d reconstruction for controllable sensor simulation. In 6th Annual Conference
on Robot Learning, 2022. 7

[13] Jingkang Wang, Ava Pun, James Tu, Sivabalan Manivasagam, Abbas Sadat, Sergio Casas, Mengye Ren, and Raquel Urtasun. Advsim:
Generating safety-critical scenarios for self-driving vehicles. In CVPR, 2021. 7

[14] Zian Wang, Tianchang Shen, Jun Gao, Shengyu Huang, Jacob Munkberg, Jon Hasselgren, Zan Gojcic, Wenzheng Chen, and Sanja
Fidler. Neural fields meet explicit geometric representations for inverse rendering of urban scenes. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2023. 7

[15] Tong Wu, Jiaqi Wang, Xingang Pan, Xudong XU, Christian Theobalt, Ziwei Liu, and Dahua Lin. Voxurf: Voxel-based efficient and
accurate neural surface reconstruction. In The Eleventh International Conference on Learning Representations, 2023. 6

[16] Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang, Xiaolin Chai, Judy Jiao, Zesong Li, Jian Wu, Kai Sun, Kun Jiang, et al.
Pandaset: Advanced sensor suite dataset for autonomous driving. In ITSC, 2021. 1, 4, 6

[17] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Manivasagam, Wei-Chiu Ma, Anqi Joyce Yang, and Raquel Urtasun. Unisim: A
neural closed-loop sensor simulator. arXiv, 2023. 1, 4, 7

[18] Ze Yang, Sivabalan Manivasagam, Yun Chen, Jingkang Wang, Rui Hu, and Raquel Urtasun. Reconstructing objects in-the-wild for
realistic sensor simulation. In IEEE International Conference on Robotics and Automation (ICRA), 2023. 7

7

https://github.com/jpcy/xatlas


[19] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long Quan. Blendedmvs: A large-scale
dataset for generalized multi-view stereo networks. CVPR, 2020. 6

[20] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for real-time rendering of neural radiance
fields. ICCV, 2021. 6

[21] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving neural radiance fields. arXiv,
2020. 3

[22] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A modern library for 3d data processing. arXiv preprint arXiv:1801.09847,
2018. 2

8


