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A. Datasets

This section supplements the “Datasets" section in the
main paper. Our models are trained either using SBD [§8]
or the combined COCO [11]+LVIS [7] datasets. Before
RITM [16], most of the deep learning-based interactive seg-
mentation models were trained either using the SBD [8] or
Pascal VOC [5] datasets. These two datasets only cover 20
categories of general objects such as persons, transporta-
tion vehicles, animals, and indoor objects. The authors
of RITM constructed the combined COCO+LVIS dataset,
which contains 118k training images of 80 diverse object
classes, for interactive segmentation. This large and diverse
training dataset contributes to the state-of-the-art perfor-
mance of RITM models. Inspired by RITM and its follow-
up works [4,12], we use SBD and COCO+LVIS as our train-
ing datasets.

B. Additional Comparison Results

This section supplements Sec. 4.1 “Comparison with
Previous Results" in the main paper. Fig. 2 shows conver-
gence results for our models on four datasets: GrabCut [15],
Berkeley [13], DAVIS [14], and COCO [!1]. Overall, our
models perform better than other models on these datasets.
However, the results in Fig. 2 are not as compelling as the
results on SBD [8] or Pascal VOC [5] (shown in Fig. 3 of
the main paper). This is likely due to the limited number of
images in these datasets (e.g. GrabCut only contains 50 in-
stances, while SBD contains 6671 instances for evaluation).

C. Human Evaluation on Medical Images

This section supplemens Sec. 4.2 “Out-of-Domain Eval-
uation on Medical Images" in the main paper. In the main
paper, we report quantitative results on medical images us-
ing an automatic evaluation mode where clicks are automat-
ically simulated. In this section, we perform human eval-
uations where a human-in-the-loop provides all the clicks.
Fig. 1 shows qualitative results on three medical image
datasets: sSTEM [6], OAIZIB [1], and BraTS [2]. For sim-

Model H,w Patch Size N Cy, Cy, G,

Ours-ViT-B 448, 448 16 x 16 12 768,128,256
Ours-ViT-L 448, 448 16 x 16 24 1024, 192,256
Ours-ViT-H 448, 448 14 x 14 32 1280, 240, 256

Table 1. Architecture parameters of SimpleClick models. N
denotes the number of self-attention blocks. C, C,, and C, denote
the feature map dimensions at different levels.

ple objects such as cell nuclei in ssTEM, it may take as little
as one click for a good segmentation. However, for more
challenging objects such as knee cartilage in the OAIZIB
dataset or brain tumors in the BraTS dataset, it may take
more than ten clicks until a high-quality segmentation is ob-
tained. Considering our models are not finetuned on the
label-scarce medical imaging datasets, our observed perfor-
mance is quite promising. The attached videos demonstrate
the evaluation process.

D. Implementation Details
D.1. Architectures

Tab. 1 shows the main architecture parameters of our
models. By default, our models use an input size of 448 X
448 during training and evaluation. Our ViT-B and ViT-L
models use a patch size of 16 X 16, while the ViT-H model
uses a smaller patch size of 14 X 14. This leads to a higher
resolution representation in terms of the number of patches.
Each patch is flattened and projected to an embed dimen-
sion of C, through the patch embedding layer. The tokens
generated by the patch embedding layer are processed by N
self-attention blocks, which N is a hyper-parameter inher-
ited from plain ViT models [9]. Inspired by ViTDet [10],
we build a simple feature pyramid with the four resolutions
{ 3i2’ 11—6, é, i }. The 11—6 resolution uses the last feature map of
the ViT backbone. The 3% resolution is built by a 2 X 2 con-
volutional layer with a stride of 2. The % (or 3_‘) resolution is
built by one (or two) 2 X 2 transposed convolution layer(s)
with a stride of 2. We use a 1 X1 convolution layer with layer
normalization to convert the channels of each feature map
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Figure 1. Qualitative results of human evaluation on three medical image datasets: ssSTEM [6], OAIZIB [1], and BraTS [3]. All the results
are obtained by a human-in-the-loop providing the clicks. Though our models are evaluated on medical images without finetuning, they
generalize well to all the unseen objects given a few clicks, as shown in the attached videos.

to predefined dimensions. Specifically, feature maps of res- then converted to the same dimension of C, through an MLP
olutions {%, %, %, %} are converted to channel dimensions layer in the segmentation head, followed by upsampling to

of {8C,,4C,,2C,,C,}, respectively. Each feature map is the i resolution. At this point, the four feature maps have
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Figure 2. Convergence analysis for GrabCut, Berkeley, DAVIS, and COCO. All models are trained on either SBD [8] or
COCO [11]+LVIS [7] (C+L). The metric is mean IoU given k clicks (mloU@k). In general, our models require fewer clicks for a given

accuracy level.

the same resolution and the same number of channels. They
are concatenated as a single feature map with 4C, channels.
Another MLP layer in the segmentation head converts this
multi-channel feature map to a one-channel feature map, fol-
lowed by a sigmoid function to obtain the final binary seg-
mentation. We use C; and C, as hyper-parameters without
tuning.

D.2. Clicks Encoding

We encode clicks, which are represented by the coordi-
nates in an image, as disks with a small radius of 5 pixels.
Positive and negative clicks are encoded separately. In our
implementation, we also attach the previous segmentation as
an additional channel, resulting in a three-channel disk map.
Two patch embedding layers, which are of the same struc-
ture, process the three-channel disk map and the RGB im-
age separately. The tokens of the two inputs after the patch
embedding layers are added element by element, without
changing the input dimensions for the self-attention blocks.
This design is more efficient than other designs such as con-

catenation and allows our ViT backbones to be initialized
with pretrained ViT weights.

D.3. Finetuning on Higher-Resolution Images

This section supplements Sec. 3.4 “Training and In-
ference Settings" in the main paper. Our models are pre-
trained on an image size of 224 x 224 but are finetuned on
an image size of 448 x 448. We first interpolate the posi-
tional encoding to the high resolution. Then, we perform
non-overlapping window attention [10] with a few global
blocks for cross-window attention. The high-resolution fea-
ture map is divided into regular non-overlapping windows.
The non-global blocks perform self-attention within each
window, while global blocks perform global self-attention.
We set the number of global blocks to 2, 6, and 8 for the
ViT-B, ViT-L, and ViT-H models, respectively.

E. Statistics for Failure Cases

This section supplements Sec. 5 “Limitations and Re-
marks” in the main paper. Our method still has much room



Backbone  Training Set NoC@85 NoC@90 NoF@85 NoF@90

Ours-ViT-B COCO+LVIS 3.43 +4.45 5.62+6.36 267 778
Ours-ViT-L COCO+LVIS 2.95 +4.15 489 £6.00 223 631
Ours-ViT-H COCO+LVIS 2.85+4.02 470 +£5.89 206 606

Table 2. Number of failures (NoF) on the SBD dataset. We
define the interactive segmentation on an image as a failure if
NoC@90>20. The mean + standard deviation of the NoC met-
ric is also provided for reference.

to improve. As shown in Tab. 2, our method suffers from
high variance and a number of failure cases. Note that the
standard deviation greater than the mean does not imply neg-
ative clicks. It shows to some extend the diversity of the
SBD dataset. As a practical annotation tool, Our method
needs to be improved in the future to handle challenging
cases.
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