
Appendix

A. Coordinate System & Camera Model

Figure 1: Spherical Coordinate System [?].
We use a spherical coordinate system to represent cam-

era locations and their relative transformations. As shown
in Figure 1, assuming the center of the object is the ori-
gin of the coordinate system, we can use θ, ϕ, and r to
represent the polar angle, azimuth angle, and radius (dis-
tance away from the center) respectively. For the creation
of the dataset, we normalize all assets to be contained inside
the XYZ unit cube [−0.5, 0.5]3. Then, we sample camera
viewpoints such that θ ∈ [0, π], ϕ ∈ [0, 2π] uniformly cover
the unit sphere, and r is sampled uniformly in the interval
[1.5, 2.2]. During training, when two images from differ-
ent viewpoints are sampled, let their camera locations be
(θ1, ϕ1, r1) and (θ2, ϕ2, r2). We denote their relative cam-
era transformation as (θ2 − θ1, ϕ2 − ϕ1, r2 − r1). Since
the camera is always pointed at the center of the coordi-
nate system, the extrinsics matrices are uniquely defined by
the location of the camera in a spherical coordinate system.
We assume the horizontal field of view of the camera to be
49.1◦, and follow a pinhole camera model.

Due to the incontinuity of the azimuth angle, we encode
it with ϕ 7→ [sin(ϕ), cos(ϕ)]. Subsequently, at both train-
ing and inference time, four values representing the relative
camera viewpoint change, [θ, sin(ϕ), cos(ϕ), r] are fed to
the model, along with an input image, in order to generate
the novel view.

B. Dataset Creation
We use Blender [?] to render training images of the fine-

tuning dataset. The specific rendering code is inherited from
a publicly released repository1 by authors of Objaverse [2].
For each object in Objaverse, we randomly sample 12 views
and use the Cycles engine in Blender with 128 samples per
ray along with a denoising step to render each image. We
render all images in 512×512 resolution and pad transpar-
ent backgrounds with white color. We also apply random-
ized area lighting. In total, we rendered a dataset of around
10M images for finetuning.

1https://github.com/allenai/objaverse-rendering

C. Finetuning Stable Diffusion
We use the rendered dataset to finetune a pretrained Sta-

ble Diffusion model for performing novel view synthesis.
Since the original Stable Diffusion network is not condi-
tioned on multimodal text embeddings, the original Stable
Diffusion architecture needs to be tweaked and finetuned to
be able to take conditional information from an image. This
is done in [1], and we use their released checkpoints. To fur-
ther adapt the model to accept conditional information from
an image along with a relative camera pose, we concatenate
the image CLIP embedding (dimension 768) and the pose
vector (dimension 4) and initialize another fully-connected
layer (772 7→ 768) to ensure compatibility with the diffu-
sion model architecture. The learning rate of this layer is
scaled up to be 10× larger than the other layers. The rest
of the network architecture is kept the same as the original
Stable Diffusion.

C.1. Training Details

We use AdamW [?] with a learning rate of 10−4 for
training. First, we attempted a batch size of 192 while main-
taining the original resolution (image dimension 512×512,
latent dimension 64×64) for training. However, we discov-
ered that this led to a slower convergence rate and higher
variance across batches. Because the original Stable Diffu-
sion training procedure used a batch size of 3072, we sub-
sequently reduce the image size to 256× 256 (and thus the
corresponding latent dimension to 32 × 32), in order to be
able to increase the batch size to 1536. This increase in
batch size has led to better training stability and a signifi-
cantly improved convergence rate. We finetuned our model
on an 8×A100-80GB machine for 7 days.

C.2. Inference Details

To generate a novel view, Zero-1-to-3 takes only 2 sec-
onds on an RTX A6000 GPU. Note that in prior works,
typically a NeRF is trained in order to render novel views,
which takes significantly longer. In comparison, our ap-
proach inverts the order of 3D reconstruction and novel
view synthesis, causing the novel view synthesis process to
be fast and contain diversity under uncertainty. Since this
paper addresses the problem of a single image to a 3D ob-
ject, when an in-the-wild image is used during inference,
we apply an off-the-shelf background removal tool [4] to
every image before using it as input to Zero-1-to-3.

D. 3D Reconstruction
Different from the original Score Jacobian Chaining

(SJC) implementation, we removed the “emptiness loss”
and “center loss”. To regularize the VoxelRF representation,

https://github.com/allenai/objaverse-rendering


we differentiably render a depth map, and apply a smooth-
ness loss to the depth map. This is based on the prior knowl-
edge that the geometry of an object typically contains less
high-frequency information than its texture. It is particu-
larly helpful in removing holes in the object representation.
We also apply a near-view consistency loss to regularize the
difference between an image rendered from one view and
another image rendered from a nearby randomly sampled
view. We found this to be very helpful in improving the
cross-view consistency of an object’s texture. All imple-
mentation details can be found in the code that is submitted
as part of the appendix. Running a full 3D reconstruction on
an image takes around 30 minutes on an RTX A6000 GPU.

Mesh extraction. We extract the 3D mesh from the Vox-
elRF representation as follows. We first query the density
grids at resolution 2003. Then we smooth the density grids
using a mean filter of size (7, 7, 7), followed by an erosion
operator of size (5, 5, 5). Finally, we run marching cubes on
the resulting density grids. Let d̄ denote the average value
of the density grids. For the GSO dataset, we use a density
threshold of 8d̄. For the RTMV dataset, we use a density
threshold of 4d̄.

Evaluation. The ground truth 3D shape and the predicted
3D shape are first normalized within the unit cube. To com-
pute the chamfer distance (CD), we randomly sample 2000
points. For Point-E and MCC, we sample from their pre-
dicted point clouds directly. For our method and SJC-I, we
sample points from the reconstructed 3D mesh. We com-
pute the volumetric IoU at resolution 643. For our method,
Point-E and SJC-I, we vocalize the reconstructed 3D sur-
face meshes using marching cubes. For MCC, we directly
voxelize the predicted dense point clouds by occupancy.

E. Baselines

To be consistent with the scope of our method, we com-
pare only to methods that (1) operate in a zero-shot setting,
(2) use single-view RGB images as input, and (3) have offi-
cial reference implementations available online that can be
adapted in a reasonable timeframe. In the following sec-
tions, we describe the implementation details of our base-
lines.

E.1. DietNeRF

We use the official implementation located on GitHub2,
which, at the time of writing, has code for low-view NeRF
optimization from scratch with a joint MSE and consistency
loss, though provides no functionality related to finetuning
PixelNeRF. For fairness, we use the same hyperparame-
ters as the experiments performed with the NeRF synthetic

2https://github.com/ajayjain/DietNeRF

dataset in [3]. For the evaluation of novel view synthesis,
we render the resulting NeRF from the designated camera
poses in the test set.

E.2. Point-E

We use the official implementation and pretrained mod-
els located on GitHub3. We keep all the hyperparameters
and follow their demo example to do 3D reconstruction
from single input image. The prediction is already normal-
ized, so we do not need to perform any rescaling to match
the ground truth. For surface mesh extraction, we use their
default method with a grid size of 128.

E.3. MCC

We use the official implementation located on GitHub4.
Since this approach requires a colorized point cloud as input
rather than an RGB image, we first apply an online off-the-
self foreground segmentation method [4] as well as a state-
of-the-art depth estimation method [6, 5] for preprocessing.
For fairness, we keep all hyperparameters the same as the
zero-shot, in-the-wild experiments described in [7]. For the
evaluation of 3D reconstruction, we normalize the predic-
tion, rotate it according to camera extrinsics, and compare
it with the 3D ground truth.

References
[1] Stable diffusion image variations - a hugging face space by

lambdalabs. 1
[2] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,

Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana Ehsani,
Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe
of annotated 3D objects. arXiv preprint arXiv:2212.08051,
2022. 1

[3] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting NeRF
on a Diet: Semantically consistent few-shot view synthesis. In
ICCV, 2021. 2

[4] OPHoperHPO. Ophoperhpo/image-background-remove-tool:
automated high-quality background removal framework for an
image using neural networks. . 1, 2

[5] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 12179–12188, 2021. 2

[6] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(3):1623–1637, 2020. 2

[7] Chao-Yuan Wu, Justin Johnson, Jitendra Malik, Christoph Fe-
ichtenhofer, and Georgia Gkioxari. Multiview compressive
coding for 3D reconstruction. arXiv:2301.08247, 2023. 2

3https://github.com/openai/point-e
4https://github.com/facebookresearch/MCC

2

https://github.com/ajayjain/DietNeRF
https://github.com/openai/point-e
https://github.com/facebookresearch/MCC

