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A. Introduction

In this document, we include additional details and re-
sults that are not included in the paper due to the page limit.
In Sec.B, we include additional details for training, avatar
use cases, and progressive neural networks (PNN) [8]. In
Sec.C, we include additional ablation results. Finally, in
Sec.D, we provide an extended discussion of limitations,
failure cases, and future work.

Extensive qualitative results are provided on the project
page. We highly encourage our readers to view them to
better understand the capabilities of our method. Specifi-
cally, we show our method’s ability to imitate high-quality
MoCap data (both train and test) and noisy motion esti-
mated from video. We also demonstrate real-time video-
based (single- and multi-person) and language-based avatar
(single- and multiple-clips) use cases. Lastly, we showcase
our fail-state recovery ability.

B. Implementation Details

B.1. Training Details

Humanoid Construction. Our humanoid can be con-
structed from any kinematic structure, and we use the
SMPL humanoid structure as it has native support for dif-
ferent body shapes and is widely adopted in the pose es-
timation literature. Fig.1 shows our humanoid constructed
based on randomly selected gender and body shape from
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Figure 1: Our framework can support body shape and gender
variations. Here we showcase humanoids of different gender
and body proportion holding a standing pose. We construct two
kinda of humanoids: capsule-based (top) and mesh-based (bot-
tom). Red: female, Blue: male. Color gradient indicates weight.

the AMASS dataset. The simulation result can then be ex-
ported and rendered as the SMPL mesh. We showcase two
types of constructed humanoid: capsule-based and mesh-
based. The capsule-based humanoid is constructed by treat-
ing body parts as simple geometric shapes (spheres, boxes,
and capsules). The mesh-based humanoid is constructed
following a procedure similar to SimPoE[11], where each
body part is created by finding the convex hull of all vertices
assigned to each bone. The capsule humanoid is easier to
simulate and design, whereas the mesh humanoid provides
a better approximation of the body shape to simulate more
complex human-object interactions. We find that mesh-
based and capsule-based humanoids do not have significant
performance differences (see Sec.C) and conduct all exper-
iments using the capsule-based humanoid. For a fair com-
parison with the baselines, we use the mean body shape of
the SMPL with neutral gender for all evaluations and show
qualitative results for shape variation. For both types of
humanoids, we scale the density of geometric shapes so
that the body has the correct weight (on average 70 kg).
All inter-joint collisions are enabled for all joint pairs ex-
cept for between parent and child joints. Collision between
humanoids can be enabled and disabled at will (for multi-
person use cases).

Training Process. During training, we randomly sample
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Table 1: Hyperparameters for PHC. o: fixed variance for
policy. «: discount factor. e: clip range for PPO

Batch Size Learning Rate o ¥ €

Value 1536 5x 275 0.05 0.99 02
Wip Wit Wiv Wi
Value 0.5 0.3 0.1 0.1

motion from the current training set Q™ and normalize it
with respect to the simulated body shape by performing for-
ward kinematics using él:T. Similar to UHC [5], we adjust
the height of the root translation $? to make sure that each of
the humanoid’s feet touches the ground at the beginning of
the episode. We use parallelly simulate 1536 humanoids for
training all of our primitives and composers. Training takes
around 7 days to collect approximately 10 billion samples.
When training with different body shapes, we randomly
sample valid human body shapes from the AMASS dataset
and construct humanoids from them. Hyperparamters used
during training can be found in Table.1

Data Preparation. We follow similar procedure to UHC
[5] to filter out AMASS sequences containing human object
interactions. We remove all sequences that sits on chairs,
move on treadmills, leans on tables, steps on stairs, floating
in the air efc., resulting in 11313 high-quality motion se-
quences for training and 140 sequences for testing. We use
a heuristic-based filtering process based on i.e. identifying
the body joint configurations corresponding to the sitting
motion or counting number of consecutive airborne frames.

Runtime. Once trained, our PHC can run in real time
(~ 32FPS) together with simulation and rendering, and
around (~ 50FPS) when run without rendering. Table.2
shows the runtime of our method with respect to the num-
ber of primitives, architecture, and humanoid type used.

Model Size. The final model size (with four primitives) is
28.8 MB, comparable to the model size of UHC (30.4 MB).

B.2. Real-time Use Cases

Real-time Physics-based Virtual Avatars from Video. To
achieve real-time physics-based avatars driven by video, we
first use Yolov8[3] for person detection. For pose estima-
tion, we use MeTRADS [9] and HybrIK [4] to provide 3D
keypoints p; and rotation 6,. MeTRADbs is a 3D keypoint
estimator that computes 3D joint positions p; in the abso-
lute global space (rather than in the relative root space). Hy-
brlK is a recent method for human mesh recovery and com-
putes joint angles ét and root position pY for the SMPL hu-
man body. One can recover the 3D keypoints p; from joint
angles 6; and root position pY using forward kinematics.
Both of these methods are causal, do not use any temporal

information, and can run in real-time (~ 30FPS). Estimat-
ing 3D keypoint location from image pixels is an easier task
than regressing joint angles, as 3D keypoints can be bet-
ter associated with features learned from pixels. Thus, both
HybrIK and MeTRADbs estimate 3D keypoints p;, with Hy-
brIK containing an additional step of performing learned
inverse kinematics to recover joint angles ;. We show re-
sults using both of these off-the-shelf pose estimation meth-
ods, using MeTRAbs with our keypoint-based controller
and HybrIK with our rotation-based controller. Empirically,
we find that MeTRADs estimates more stable and accurate
3D keypoints, potentially due to its keypoint-only formu-
lation. We also present a real-time multi-person physics-
based human-to-human interaction use case, where we drive
multiple avatars and enable inter-humanoid collision. To
support multi-person pose estimation, we use OCSort [1]
to track individual tracklets and associate poses with each
person. Notice that real-time use cases pose additional
challenges than offline processing: detection, pose/keypoint
estimation, and simulation all need to run at real-time at
around 30 FPS, and small fluctuations in framerate could
lead to unstable imitation and simulation. To smooth out
noisy depth estimates, we use a Gaussian filter to smooth
out estimates from t-120 to t, and use the “mirror” setting
for padding at boundary.

Virtual Avatars from Language. For language-based mo-
tion generation, we adopt MDM [10] as our text-to-motion
model. We use the official implementation, which generates
3D keypoints p; by default and connects it to our keypoint-
based imitator. MDM generates fixed-length motion clips,
so additional blending is needed to combine multiple clips
of generated motion. However, since PHC can naturally go
to far-away reference motion and handles disjoint between
motion clips, we can naively chain together multiple clips of
motion generated by MDM and create coherent and physi-
cally valid motion from multiple text prompts. This enables
us to create a simulated avatar that can be driven by a con-
tinuous stream of text prompts.

B.3. Progressive Neural Network (PNN) Details

A PNN [8] starts with a single primitive network pL
trained on the full dataset Q Once ’P(l)A is trained to con-
vergence on the entire motion dataset () using the imita-
tion task, we create a subset of hard motions by evaluating
P on Q. Sequences that P fails forms QAl(l:r)d. We then
freeze the parameters of P and create a new primitive
P (randomly initialized) along with lateral connections
that connect each layer of PWD 1o PP, Given the layer
weight Wi(k), activation function f, and the learnable lat-
eral connection weights Ul-(j :k), we have the hidden activa-
tion h*) of the it layer of k" primitive as:
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Figure 2: Progressive neural network architecture. Top: PNN

with lateral connection. Bottom: PNN with weight sharing. hgj )
indicates hidden activation of 7" primitive’s ¢ layer.
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Fig.2 visualizes the PNN with the lateral connection architecture.
Essentially, except for the first layer, each subsequent layer re-
ceives the activation of the previous layer processed by the learn-
able connection matrices Ufj **) We do not use any adapter layer
as in the original paper. As an alternative to lateral connection,
we explore weight sharing and warm-starts the primitive with the
weights from the previous one (as opposed to randomly initial-
ized). We find both methods equally effective (see Sec.C) when
trained with the same hard-negative mining procedure, as each
newly learned primitive adds new sequences that PHC can imi-
tate. The weight sharing strategy significantly decreases training
time as the policy starts learning harder sequences with basic mo-
tor skills. We use weight sharing in all our main experiments.

C. Supplementary Results
C.1. Categorizing the Forgetting Problem

As mentioned in the main paper, one of the main issues in
learning to mimic a large motion dataset is the forgetting prob-
lem. The policy will learn new sequences while forgetting the
ones already learned. In Fig.3, we visualize the sequences that
the policy fails to imitate during training. Starting from the 12.5k
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Figure 3: Here we plot the motion indexes that the policy fails on
over training time; we only plot the 529 sequences that the policy
has failed on over these training epoches. A white pixel denotes
that sequence is can be successfully imitated at the given epoch,
and a black pixel denotes an unsuccessful imitation. We can see
that while there are 30 sequences that the policy consistently fails
on, the remaining can be learned and then forgotten as training
progresses. The staircase pattern indicates that the policy fails on
new sequences each time it learns new ones.

epoch, each evaluation shows that some sequences are learned, but
the policy will fail on some already learned sequences. The stair-
case pattern indicates that when learning sequences failed previ-
ously, the policy forgets already learned sequences. Numerically,
each evaluation has around 30% overlap of failed sequences (right
end side). The 30% overlap contains the backflips, cartwheel-
ing, and acrobatics; motions that the policy consistently fails to
learn when trained together with other sequences. We hypothe-
size that these remaining sequences (around 40) may require addi-
tional sequence-level information for the policy to learn properly
together with other sequences.

Fail-state recovery Learning the fail-state recovery task can
also lead to forgetting previously learned imitation skills. To ver-
ify this, we evaluate P on the H36M-Test-Video dataset, which
leads to a performance of Succ: 42.5%, Egmpjpe: 87.3, and Enpipe:
55.9, which is much lower than the single primitive P perfor-
mance of Succ: 59.4%, Egmpjpe: 60.2, and Empjpe: 34.4. Thus,
learning the fail-state recovery task may lead to severe forgetting
of the imitation task, motivating our PMCP framework to learn
separate primitives for imitation and fail-state recovery.

C.2. Additional Ablations

In this section, we provide additional ablations of the compo-
nents of our framework. Specifically, we study the effect of MOE
vs. MCP, lateral connection vs. weight sharing, and the number of
primitives used. We also report the inference speed (counting net-
work inference and simulation time). All experiments are carried
out with the rotation-based imitator and incorporate the fail state
recovery primitive P as the last primitive.

PNN Lateral Connection vs. Weight Sharing. As can be seen
in Table 2, comparing Row 1 (R1) and R7 , we can see that PNN
with lateral connection and weight sharing produce similar per-
formance, both in terms of motion imitation and inference speed.
This shows that in our setup, the weight sharing scheme is an ef-
fective alternative to lateral connections. This can be explained by
the fact that in our case, each “task” on which the primitives are
trained is similar and does not require lateral connection to choose
whether to utilize prior experiences or not.

MOE vs. MCP. The difference between the top-1 mixture of
experts (MOE) and multiplicative control (MCP) is discussed in



Table 2: Supplmentary ablation on components of our pipeline,
performed using noisy pose estimate from HybrIK + Metrabs
(root) on the H36M-Test-Video* data. MOE: top-1 mixture of
experts. MCP: multiplicative control policy. PNN: progressive
neural networks. Type: between Cap (capsule) and mesh-based
humanoids. All models are trained with the same procedure.

H36M-Test-Video*
PNN-Lateral PNN-Weight MOE MCP  Type # Prim ‘ Succ T Egmpipe +  Empjpe +  FPS

v X X X Cap 4| 87.5% 55.7 36.2 32
X v v X  Cap 4| 87.5% 563 343 33
X v X v Mesh 4| 86.9% 62.6 39.5 30
X X X X  Cap 1| 59.4% 60.2 372 32
X v X v Cap 2 | 65.6% 58.7 37.3 32
X v X v Cap 3| 80.9% 56.8 36.1 32
X v X v Cap 4 | 88.7% 554 34.7 32
X v X v Cap 5| 87.5% 577 36.0 32

detail in the MCP paper [6]: top-1 MOE only activates one ex-
pert at a time, while MCP can activate all primitives at the same
time. Comparing R2 and R7, as expected, we can see that top-1
MOE is slightly inferior to MCP. Since all of our primitives are
pretrained and frozen, theoretically a perfect composer should be
able to choose the best primitive based on input for both MCP and
MOE. MCP, compared to MOE, can activate all primitives at once
and search a large action space where multiple primitives can be
combined. Thus, MCP provides better performance, while MOE is
not far behind. This is also observed by CoMic[2], where they ob-
serve similar performance between mixture and product distribu-
tions when used to combine subnetworks. Note that top-inf MOE
is similar to MCP where all primitives can be activated.

Capsule vs. Mesh Humanoid. Comparing R3 and R7, we can see
that mesh-based humanoid yield similar performance to capsule-
based ones. It does slow down simulation by a small amount (30
FPS vs. 32 FPS), as simulating mesh is more compute-intensive
than simulating simple geometries like capsules.

Number of primitives. Comparing R4, RS, R6, R7, and RS, we
can see that the performance increases as the number of primi-
tives increases. Since the last primitive P s for fail-state re-
covery and does not provide motion imitation improvement, RS
is similar to the performance of models trained without PMCP
(R4). As the number of primitives grows from 2 to 3, we can
see that the model performance grows quickly, showing that MCP
is effective in combining pretrained primitives to achieve motion
imitation. Since we are using relatively small networks, the in-
ference speed does not change significantly with the number of
primitives used. We notice that as the number of primitives grows,
Q™ becomes more and more challenging. For instance, QW
contains mainly highly dynamic motions such as high-jumping,
back flipping, and cartwheeling, which are increasingly difficult
to learn together. We show that (see supplementary webpage) we
can overfit these sequences by training on them only, yet it is sig-
nificantly more challenging to learn them together. Motions that
are highly dynamic require very specific steps to perform (such
as moving while airborne to prepare for landing). Thus, the ex-
periences collected when learning these sequences together may
contradict each other: for example, a high jump may require a
high speed running up, while a cartwheel may require a different
setup of foot-movement. A per-frame policy that does not have
sequence-level information may find it difficult to learn these se-

quences together. Thus, sequence-level or information about the
future may be required to learn these high dynamic motions to-
gether. In general, we find that using 4 primitives is most effective
in terms of training time and performance, so for our main evalua-
tion and visualizations, we use 4-primitive models.

D. Extended Limitation and Discussions

Limitation and Failure Cases. As discussed in the main paper,
PHC has yet to achieve 100% success rate on the AMASS training
set. With a 98.9% success rate, PHC can imitate most of our daily
motion without losing balance, but can still struggle to perform
more dynamic motions, such as backflipping. For our real-time
avatar use cases, we can see a noticeable degradation in perfor-
mance from the offline counterparts. This is due to the following:

* Discontinuity and noise in reference motion. The inherent
ambiguity in monocular depth estimation can result in noisy
and jittery 3D keypoints, particularly in the depth dimension.
These small errors, though sometimes imperceptible to the
human eye, may provide PHC with incorrect movement sig-
nals, leaving insufficient time for appropriate reactions. Ve-
locity estimation is also especially challenging in real-time
use cases, and PHC relies on stable velocity estimation to
infer movement cues.

Mismatched framerate. Since our PHC assumes 30 FPS mo-
tion input, it is essential for pose estimates from video to
match for a more stable imitation. However, few pose esti-
mators are designed to perform real-time pose estimation (>
30 FPS), and the estimation framerate can fluctuate due to
external reasons, such as the load balance on computers.

* For multi-person use case, tracking and identity switch can
still happen, leading to a jarring experience where the hu-
manoids need to switch places.

A deeper integration between the pose estimator and our controller
is needed to further improve our real-time use cases. As we do not
explicitly account for camera pose, we assume that the webcam is
level with the ground and does not contain any pitch or roll. Cam-
era height is manually adjusted at the beginning of the session.
The pose of the camera can be taken into account in the pose esti-
mation stage. Another area of improvement is naturalness during
fail-state recovery. While our controller can recover from fail-state
in a human-like fashion and walks back to resume imitation, the
speed and naturalness could be further improved. Walking gait,
speed, and tempo during fail-state recovery exhibits noticeable ar-
tifacts, such as asymmetric motion, a known artifact in AMP [7].
During the transition between fail-state recovery and motion imi-
tation, the humanoid can suddenly jolt and snap into motion imi-
tation. Further investigation (e.g. better reward than the point-goal
formulation, additional observation about trajectory) is needed.

Discussion and Future Work. We propose the perpetual hu-
manoid controller, a humanoid motion imitator capable of imitat-
ing large corpus of motion with high fidelity. Paired with its ability
to recover from fail-state and go back to motion imitation, PHC is
ideal for simulated avatar use cases where we no longer require re-
set during unexpected events. We pair PHC with a real-time pose
estimator to show that it can be used in a video-based avatar use
case, where the simulated avatar imitates motion performed by the



actors perpetually without requiring reset. This can empower fu-
ture virtual telepresence and remote work, where we can enable
physically realistic human-to-human interactions. We also con-
nect PHC to a language-based motion generator to demonstrate
its ability to mimic generated motion from text. PHC can imi-
tate multiple clips by performing motion inbetweening. Equipped
with this ability, future work in embodied agents can be paired
with a natural language processor to perform complex tasks. Our
proposed PMCP can be used as a general framework to enable pro-
gressive RL and multi-task learning. In addition, we show that one
can use only 3D keypoint as motion input for imitation, alleviat-
ing the requirement of estimating joint rotations. Essentially, we
use PHC to perform inverse kinematics based on the input 3D key-
points and leverages the laws of physics to regulate its output. We
believe that PHC can also be used in other areas such as embodied
agents and grounding, where it can serve as a low-level controller
for high-level reasoning functions.
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