Supplementary Material

A. Encoder and Transformer Details

Visual Encoder. Video Swin Transformer [7] is adopted as
the visual encoder because of its effectiveness in extracting
robust spatio-temporal features. Multi-stage visual features
with spatial strides of {4,8,16,32} are used for segmenta-
tion, i.e., the last three stages for cross-modal fusion and
the first two stages for multi-granularity optimization. We
resize the multi-scale vision-language features to the same
resolution and use element-wise addition to integrate them
into a single layer for conditional segmentation.

Textual Encoder. The pre-trained RoBERTa [0] is used to
encode language expressions due to its proven performance
in natural language processing tasks. Each expression is
encoded into word features and sentence features.
Transformer. Deformable Transformer [ 1 3] with 4 encoder
and decoder layers is used to encode vision-language fea-
tures and predict instance embeddings due to its effective-
ness and efficiency in capturing global pixel-level relations.

B. Instance Matching Details

Our instance matching process follows the standard
paradigm used by previous transformer-based methods for
video segmentation [11, 1, 2, 3, 10, 12]. Specifically, we
use N=5 learnable instance queries for prediction and ap-
ply the Hungarian algorithm [4] to select the best result. To
achieve this, SgMg predicts patch masks M p, bounding
boxes B, and confidence scores S for each expression. Us-
ing the set of predictions y = {Vy’,i € [1,..., N]}, where
y' = {MY B S }?:1, we compute the matching loss
Lnatch for each query based on the ground truth § and em-
ploy Hungarian algorithm to find the best match that has the
minimum loss. L,,4¢cn lies in three parts:

Limatch = AMpLmp + AL + AsLs (D

where A denotes the coefficient to balance L, qtch-

C. Further Implementation Details

Our training settings follow [11, 5, 1]. The data aug-
mentation includes random resize, random crop, random
horizontal flip, and photometric distortion. The models are
trained using AdamW [8] optimizer for 12 epochs during
pre-training, and 6 or 9 epochs during main training depend-
ing on whether pre-training is used. During pre-training
on RefCOCOs, we set the initial learning rates of 2.5e-6,
1.25e-5, and 2.5¢e-5 for the text encoder, visual encoder, and
the rest of the model, respectively. The pre-training em-
ploys a single frame, with the learning rates decayed by a
factor of 10 at the 8th and 10th epochs. In the main training,
we freeze the text encoder, and the initial learning rates of
2.5e-5 and 5e-5 are adopted for the visual encoder and the

rest, respectively. The learning rates are divided by 10 at
the 6th and 8th epoch.

During inference, we perform clip-wise segmentation as
in [11]. Specifically, we set the clip length equal to the
number of video frames for Ref-YoutubeVOS and 36 for
Ref-DAVIS17 to enable better spatio-temporal feature rep-
resentation and efficiency. Notably, our approach can also
perform frame-wise segmentation to achieve good perfor-
mance according to the referring image segmentation re-
sults presented in the main paper.

D. Conditional Patch Segmentation

We present the pseudo-code of our conditional patch seg-
mentation process in Fig. A. To be specific, instance em-
beddings are employed to predict conditional patch ker-
nels. The conditional patch kernels are reshaped to dynamic
weights and bias, which form two point-wise convolutions.
Finally, point-wise convolutions are used to segment vision-
language features to obtain patch masks.

def cond_patch_segm(inst_embeds, visi_lang feats):

cond_patch kernel = Linear(inst_embeds)

weights, bias = Parameterization(cond_patch kernel)

f = visi_lang feats
for i, (w, b) in enumerate(zip(weights, bias)):
f = Point_Conv(f, weight=w, bias=b, stride=1)
if i < len(weights) - 1:
f = relu(f)

patch_segm = f
return patch_segm

Figure A. Pseudo-code of conditional patch segmentation.

E. Ablation of Spectral Convolutions in SCF

We replace the spectral convolutions in Spectrum-guided
Cross-modal Fusion (SCF) with spatial convolutions or lin-
ear layers, which contain more parameters than ours. As
shown in Table A, our SCF that operates in the spectral do-
main achieves the best performance.

Module | J&F | Para. Num. (M)
SCF w/ Spatial Conv | 57.6 4.7
SCF w/ Linear 57.9 24
SCF (Ours) 58.9 24

Table A. Ablation of SCF with different operations.



F. Additional Ablation Study Results

We remove CPK/MSO to fully evaluate the options in
our approach. As shown in Table B, deleting CPK/MSO
leads to a 0.5/1.5% accuracy drop.

Module | J&F | FPS
SgMg w/o CPK | 584 | 65
SgMg w/o MSO | 574 | 66

Table B. Ablation of CPK and MSO.

G. Additional t-SNE Visualizations

To further demonstrate the presence of feature drift,
we present additional t-SNE [9] visualizations in Fig. B.
Specifically, we add the feature decoding process into the
model, where the token embeddings of encoded features
JFui are decoded using the decoder in [ 1] to obtain ]-'
for all frames in each video. By visualizing these embed-
dings with t-SNE, we observe that the token embeddings of
Fp and Fo +, are separated into two distinct clusters. This
indicates that the decoding process results in feature drift.
However, the segmentation kernels struggle to perceive this
drift during forward propagation since the kernels are pre-

dicted before the feature decoding.
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Figure B. t-SNE [9] visualization of the feature embeddings in dif-
ferent videos before (red cluster) and after (blue cluster) decoding.

H. Additional Qualitative Results

In Fig. C, we present additional qualitative results that in-
clude occlusion, similar appearance, fast motion, and small
objects.
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