
Neural Implicit Surface Evolution
– Supplementary Material –

Tiago Novello
IMPA

Vinicius da Silva
PUC-Rio

Guilherme Schardong
U Coimbra

Luiz Schirmer
Unisinos

Helio Lopes
PUC-Rio

Luiz Velho
IMPA

1. Minimal surfaces
The evolution of a surface S governed by the mean cur-

vature equation (MCE) leads to a family of surfaces that
reduce their area over time. Let f :R3×R→R be a solution
of MCE and St be its corresponding surface evolution.

∂f

∂t
− α ∥∇f∥ κ = 0 in R3 × (a, b),

f = g on R3 × {t = 0}.
(1)

The area of St can be measured using Area(St) =
∫
St

dSt,
where dSt is the area form of St. It can be proved that the
first variation of area of the family St is given by

d

dt
Area(St)

∣∣∣
t=0

= −
∫
S0

κ2dS0, (2)

The proof can be found in [1, Sec. 3.5], [3, Cor. 6.2]. Thus,
if the mean curvature satisfies κ ̸= 0, the area of St initially
decreases because its derivatives are negative at t = 0.

A surface St0 is critical if d
dtArea(St)

∣∣∣
t=t0

= 0, that is, if

κ is constant equal to zero. This surface is called minimal.
Examples of minimal surfaces include the plane, catenoids,
helicoids, Enneper surface, Costa’s minimal surfaces, etc.

We can fix a region of the initial surface S in the MCE.
If S has a boundary curve, fixing it during the evolution
leads to a surface of minimal area. This problem is related
to the physical shapes of soap films at equilibrium under the
surface tension [5].

2. Network initialization
Proposition 2.1. Let gϕ : R3 → R and fθ : R3×R → R be
networks with depth d. If fθ is wider than gϕ, we can define
θ in terms of ϕ such that fθ(p, t) = gϕ(p) for all (p, t).

Proof. Recall that gϕ(p) = Bd+1 ◦ gd ◦ · · · ◦ g1(p) + bd+1,
where gi(pi) = sin(Bipi+bi) is the i-layer, Bi is a matrix
in RNi+1×Ni , and bi ∈ RNi+1 is the i-bias. Analogously,
fθ(p, t) = Ad+1 ◦ fd ◦ · · · ◦ f1(p, t) + ad+1, with its i layer
fi : RMi → RMi+1 given by fi(pi) = sin(Aipi + ai).

By hypothesis, fθ, and gϕ have the same depth d, and the
width of each layer of gϕ is less than or equal to the width of
the respective layer of fθ, i.e., Ni ≤ Mi. Thus, we define
the hidden layers of fθ using Ai =

(
Bi 0
0 0

)
, ai =

(
bi
0

)
.

Evaluating (p, c) ∈ RNi × RMi−Ni in fi results in

fi(p, c) = sin
((

Bi 0
0 0

)
(pc) +

(
bi
0

))
=

(
gi(p)
0

)
.

Thus, defining A1 =
(

B1 0
Fp Ft

)
, a1 =

(
b1
0

)
, we obtain the

desired result because

f1(p, c) = sin
((

B1 0
Fp Ft

)
(pt) +

(
bi
0

))
=

(
g1(p)

Fpc+Ftt

)
.

In other words, the neurons gi(p) of the network gϕ remain
intact along the layers.

The blocks Fp and Ft project the entry points (p, t) to
a dictionary of sine waves, which are not considered in the
following layers because they are fed to zero blocks. How-
ever, new hidden weights can activate such features as the
training advances. In Sec 4.4, we present experiments vary-
ing the width of fθ to explore such initialization in the prob-
lem of solving the MCE.

To reproduce Prop 2.1 with fθ deeper than gϕ, we must
be able to add a hidden layer f(pi) = sin(Ap + a) to fθ
which do not exist in gϕ. Thus, it would be desirable to ini-
tialize f as an identity layer. Following the above approach,
we could define A = I and a = 0 obtaining f(p) = sin(p),
however, in general, sin(p) ̸= p. This can be fixed using
that sin(p) ≈ p when ∥p∥ is close to zero. Therefore, we
define A = λI , with λ being a small number, and multiply
the resulting output of f by 1

λ to keep it close to p.

3. Extracting a network at a given time instant
Here, for a given time instant t, we extract the network

gϕ=f(·, t) :R3→R from a neural network fθ :R3×R→R.
Suppose fθ(p, t) = Ad+1 ◦ fd ◦ · · · ◦ f1(p, t) + ad+1, with
each i-layer defined by fi(pi) = sin(Aipi + ai).

To define gϕ such that gϕ(p) = fθ(p, t) for all (p, t), we
modify the first layer f1(p, t)=sin(A1(p, t)+a1) of fθ.

The matrix A1 has 4 column vectors {w1, w2, w3, u} in
RM2 , where M2 is the dimension of the codomain of f1.
Denoting p by (x, y, z), we obtain

A1(p, t) = x · w1 + y · w2 + z · w3 + t · u,

We use the matrix B1 consisting of the columns w1, w2, w3,
and the bias b1 = a1 + t · u to set the first layer g1 of gϕ.
Specifically, we define gϕ through:

gϕ(p) = Ad+1 ◦ fd ◦ · · · ◦ f2 ◦ g1(p) + ad+1.

Note that gϕ equals fθ, except for its first layer f1(p, t),
which is replaced by g1(p). We define it as

g1(p) = sin
(
x · w1 + y · w2 + z · w3︸ ︷︷ ︸

B1p

+ t · u+ a1︸ ︷︷ ︸
b1

)
.

From the definition of gϕ, we have gϕ(p) = fθ(p, t), which
implies a kind of opposite direction of Prop 2.1.

Proposition 3.1. Let fθ :R3×R→R be a neural network,
and t ∈ R. There is a network gϕ : R3 → R with the same
hidden layers of fθ such that fθ(p, t)=gϕ(p) for all p∈R3.

4. Ablation studies
The ablation studies detailed below were performed us-

ing the MCE (Eq 1) under two settings: With our initializa-
tion scheme, presented in Prop 2.1, and the standard initial-
ization [4]. The goal is to compare the training convergence
of the data constraint Ldata and the LSE constraint LLSE for
both initialization schemes under different circumstances.

We will visualize the graphs of Ldata and LLSE during the
training of a neural network fθ : R3 ×R → R to satisfy the
MCE within a time interval (a, b). In the upcoming exper-
iments, we will use the SDF g : R3 → R of the Bunny as
the initial condition, f = g on R3 × {0}. To initialize fθ
using our method, we approximate g by a network gϕ.

4.1. Varying time interval

We vary (a, b) in the MCE with scale α = 0.001. We
recall that the initial condition is at 0∈(a, b) and on the pos-
itive (negative) part, the MCE smooths (sharpens) it. Thus,
the positive part should be easier to train since no higher fre-
quencies would arise. In contrast, training the negative part
creates new higher frequencies, which could take longer to
learn. We evaluate it in the following intervals:

(a, b) =(0, 0.25), (0, 0.5), (0, 1),

(−0.1, 0.25), (−0.1, 0.5), (−0.1, 1),

(−0.25, 0.25), (−0.25, 0.5), (−0.25, 1).

Fig 1 and 2 present the data and LSE constraint conver-
gences for these intervals. As expected, our initializa-
tion (top image) provides a better training convergence.

For Ldata, this is due to the fact that fθ = gϕ at t = 0,
thus, Ldata only have to maintain this restriction.

0.0

0.1

0.2

0.3

0.4

0.5

Da
ta

 C
on

st
ra

in
t

Ours

0 100 200 300 400 500
Training Step

0.0

0.1

0.2

0.3

0.4

0.5

Da
ta

 C
on

st
ra

in
t

Standard

t = [-0.10, 0.25]
t = [-0.10, 0.50]
t = [-0.10, 1.00]
t = [-0.25, 0.25]
t = [-0.25, 0.50]
t = [-0.25, 1.00]
t = [0.00, 0.25]
t = [0.00, 0.50]
t = [0.00, 1.00]

Figure 1. Data constraint values for different training intervals.

The convergence of the constraints Ldata and LLSE is
faster for both initializations when using smaller intervals,
as can be seen in the case of (0, 0.25) (in purple). They also
take longer to train on intervals with a negative part. This is
likely because the solutions in such regions are sharper, re-
quiring, thus, more frequencies for accurate representation,
if a solution exists at all.

0.0

0.1

0.2

0.3

0.4

0.5

LS
E

Co
ns

tra
in

t

Ours

0 100 200 300 400 500
Training Step

0.0

0.1

0.2

0.3

0.4

0.5

LS
E

Co
ns

tra
in

t

Standard

t = [-0.10, 0.25]
t = [-0.10, 0.50]
t = [-0.10, 1.00]
t = [-0.25, 0.25]
t = [-0.25, 0.50]
t = [-0.25, 1.00]
t = [0.00, 0.25]
t = [0.00, 0.50]
t = [0.00, 1.00]

Figure 2. LSE constraint values for different training intervals.

4.2. Varying MCE scale

We use the interval (a, b) = (−0.1, 1) and vary the scales
α = i × 10−3 for i = 1, 2, 3, 4, 5, 10, 100. In theory, in-
creasing (a, b) while fixing α is equivalent to the previous
experiment. However, in practice, the representation capac-
ity of fθ may not be enough to learn large variations in a
short time period. This is evident in Figs 3-4, where the
convergence of Ldata and LLSE is sorted by α. In general,
our initialization results in a better convergence, but we ob-
served that when using a high scale Ldata diverges first, since
LLSE dominates the training. See the case α = 0.1 (in pur-
ple).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Da
ta

 C
on

st
ra

in
t

Ours

0 100 200 300 400 500
Training Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Da
ta

 C
on

st
ra

in
t

Standard

s = 0.001
s = 0.002
s = 0.003
s = 0.004
s = 0.005
s = 0.01
s = 0.1

Figure 3. Data constraint values for different MCE scale values.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

LS
E

Co
ns

tra
in

t

Ours

0 100 200 300 400 500
Training Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

LS
E

Co
ns

tra
in

t

Standard

s = 0.001
s = 0.002
s = 0.003
s = 0.004
s = 0.005
s = 0.01
s = 0.1

Figure 4. LSE constraint values for different MCE scale values.

4.3. Varying the point-sampling proportions

This experiment aimed to evaluate how the point-
sampling of initial and intermediate conditions im-
pacts the training convergence of Ldata and LLSE.
We used the default point-sampling proportions of
{l1, l2, l3} = {0.25, 0.25, 0.5}, as well as {0.1, 0.1, 0.8}
and {0.4, 0.4, 0.2}. Here, l1, l2, and l3 are the numbers of
space-time, on-surface, and off-surface points sampled at
each training step (see Sec 4.2 of the main paper).

Figs 5-6 present the convergences of the resulting con-
straints during training. It can be observed that sampling
fewer points at t = 0 results in a better convergence.

0.0

0.1

0.2

0.3

0.4

0.5

Da
ta

 C
on

st
ra

in
t

Ours

0 100 200 300 400 500
Training Step

0.0

0.1

0.2

0.3

0.4

0.5

Da
ta

 C
on

st
ra

in
t

Standard

p = [0.1, 0.1, 0.8]
p = [0.25, 0.25, 0.5]
p = [0.4, 0.4, 0.2]

Figure 5. Ldata values for different sampling proportions.

0.0

0.1

0.2

0.3

0.4

0.5

LS
E

Co
ns

tra
in

t

Ours

0 100 200 300 400 500
Training Step

0.0

0.1

0.2

0.3

0.4

0.5

LS
E

Co
ns

tra
in

t

Standard

p = [0.1, 0.1, 0.8]
p = [0.25, 0.25, 0.5]
p = [0.4, 0.4, 0.2]

Figure 6. LLSE values for different sampling proportions.

However, when using different sampling proportions, we
obtain new constraints Ldata and LLSE. Also, sampling
fewer points at t = 0 can result in a longer convergence
time for Ldata, as shown in the initial condition (Bunny) for
each proportion in Fig 7. This is probably due to the spec-
tral bias phenomenon: lower frequencies are learned first.
As a result, LLSE benefits from having a smoother initial
condition and prevents fitting at t = 0.

Figure 7. The zero-level sets of fθ at t = 0 trained using the pro-
portions {0.1, 0.1, 0.8}, {0.25, 0.25, 0.5}, and {0.4, 0.4, 0.2}.

4.4. Varying the network width

This experiment evaluates the impact of the network
width on the training convergence using our standard ini-
tializations. We began with a width of 128 neurons and
increased it by 16 neurons to a limit of 256. The remain-
ing parameters are set to (a, b) = (−0.25, 1), α = 1e−3,
{l1, l2, l3}= {0.25, 0.25, 0.5}. As expected, increasing the
width leads to better convergence; see Figs 8-9.

0.0

0.1

0.2

0.3

0.4

0.5

Da
ta

 C
on

st
ra

in
t

Ours

0 100 200 300 400 500
Training Step

0.0

0.1

0.2

0.3

0.4

0.5

Da
ta

 C
on

st
ra

in
t

Standard

n = 128
n = 144
n = 160
n = 176
n = 192
n = 208
n = 224
n = 240
n = 256

Figure 8. Data constraint values for different network widths.

0.0

0.1

0.2

0.3

0.4

0.5

LS
E

Co
ns

tra
in

t

Ours

0 100 200 300 400 500
Training Step

0.0

0.1

0.2

0.3

0.4

0.5

LS
E

Co
ns

tra
in

t

Standard

n = 128
n = 144
n = 160
n = 176
n = 192
n = 208
n = 224
n = 240
n = 256

Figure 9. LSE constraint values for different network widths.

4.5. Varying the initial condition

Finally, we vary the initial condition of the MCE to eval-
uate the convergence of the network fθ on different models:
Bob, Max Planck, Falcon, Witch, and Neptune. During the
training of each model, we fix the sampling proportions to
{l1, l2, l3}={0.25, 0.25, 0.5}. Table 1 presents the network
architectures (the width of the hidden layers), the time re-
quired for training 500 epochs, the animation interval (a, b),
and the MCE scale α parameters.

Model Network arch. Interval Scale Time (s)
Bob [64, 64] (−0.5, 1) 1e− 2 5.04
Max [128, 128, 128] (−0.5, 1) 2e− 3 7.07
Falcon [160, 160, 160] (−0.1, 1) 1e− 3 112.17
Witch [256, 256, 256] (−0.5, 1) 1e− 3 143.34
Neptune [300, 300, 300] (−0.1, 1) 2e− 4 162.42

Table 1. The network architectures and the time spent in their train-
ing to learn the evolution of the Bob, Max Planck, Falcon, Witch,
and Neptune surfaces under the MCE.

For the sampling of on-surface points, we used different
point clouds sampled from the original models. This af-
fects the time needed to train our networks, as each epoch
is defined as a complete iteration over the point-cloud. The
Bob, Max Planck, Falcon, Witch, Neptune have 5344, 5002,
72466, 77553, 72668 points, respectively.

Fig 10 illustrates the zero-level sets of the resulting evo-
lutions of Bob, Max Plank, Falcon, Witch, and Neptune
models (middle). The sharpened models are on the left
column. Notice that their geometric features are enhanced.
Particularly, Max Planck’s nose, mouth and ears are notice-
ably more prominent. The same occurs for the Wizard’s
sword and cape, and Neptune’s hands and spear tip.

Figure 10. The zero-level sets of fθ for Bob, Max Plank, Falcon,
Witch, and Neptune models (middle). The left and right columns
provide the sharpening and smoothing of the models.

4.6. Additional interpolations

Finally, Figure 4.6 shows additional examples of interpo-
lations between neural implicit functions using the method
presented in Sec 5.3 of the paper. The bracelets and chairs
models are from the Thingi10K dataset [6]. We choose to
interpolate the chairs because this was also an example con-
sidered by Lipschitz MLP [2]. We observed that when the
features of the objects are aligned, the interpolation works
like morphing between the shapes; see Line 3 of Figure 11.

Figure 11. Interpolations between neural implicit functions. We
observe that choosing surfaces with a significant overlapping of
their interior regions results in better interpolations.

References
[1] Manfredo P Do Carmo. Differential geometry of curves and

surfaces: revised and updated second edition. Courier Dover
Publications, 2016. 1

[2] Hsueh-Ti Derek Liu, Francis Williams, Alec Jacobson, Sanja
Fidler, and Or Litany. Learning smooth neural functions via
lipschitz regularization. In ACM SIGGRAPH 2022 Confer-
ence Proceedings, SIGGRAPH ’22. Association for Comput-
ing Machinery, 2022. 5

[3] Francisco Martı́n and Jesús Pérez. An introduction to the
mean curvature flow. In XXIII International Fall Workshop
on Geometry and Physics, held in Granada. https://www. ugr.
es/jpgarcia/investigacion. html, 2014. 1

[4] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural
Information Processing Systems, 33, 2020. 2

[5] Stephanie Wang and Albert Chern. Computing minimal sur-
faces with differential forms. ACM Transactions on Graphics
(TOG), 40(4):1–14, 2021. 1

[6] Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of
10,000 3d-printing models. arXiv preprint arXiv:1605.04797,
2016. 5

