
A. Additional Results

“A kitten” “A dog”

“A pixel art of a cat” “A tiger”

“A bungalow” “A skyscraper”

“A two story house” “A restaurant”

“Shaquille O’Neal on a match” “Kobe Bryant”

“Shaquille O’Neal hitting the ball” “Michael Jordan”

Edit “A cat” into “A green cat”

Edit “A house” into “A gingerbread house”

Edit “Shaquille O’Neal” into “Shaquille O’Neal playing tennis”

“A chair in the park” “A bar stool”

“A yellow chair” “A beach chair”

“An oil painting of a dog” “A wolf”

“A photo of a dog on the beach” “A Schnauzer dog”

“Hagrid making potions” “Harry Potter”

“A painting of Hagrid” “Albus Dumbledore”

Edit “A chair” into “A massage chair”

Edit “A dog” into “A Rottweiler dog”

Edit “Hagrid” into “Blond Hagrid”

“A medallion” “A bronze medal”

Edit “A medal” into “A silver medal”

“A vase with orchids” “Azaleas”

Edit “Orchid” into “Yellow orchid”

“A scoop of ice cream” “A bucket of ice”

Edit “Ice cream” into “Pistachio ice cream”

“A photo of a panther in the jungle” “A leopard”

Edit “A panther” into “A purple panther”

“An olympic medal” “A trophy cup” “An orchid in the beach” “Pink orchids”

“A person eating ice cream” “Vanilla ice cream” “A children’s drawing of a panther” “A cheetah”

Figure 12: Additional results using TIME. After applying the requested edit (in black) to the text-to-image model, related
prompts (green) change their behavior accordingly, whereas unrelated ones (gray) remain unaffected.



B. Closed-Form Solution Proof
We aim to minimize the loss function presented in Equation 4, which is
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To find the optimal W′
K , we differentiate w.r.t. it and set to zero:
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The last implication holds because cic
⊤
i are symmetric rank-one matrices with a positive eigenvalue and therefore positive

semi-definite, and λI is positive definite (λ > 0), which makes their total sum positive definite and therefore invertible. This
makes the obtained solution unique and well-defined. Similarly, we find the optimal W′

V using the same method and obtain
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thus completing the proof. Q.E.D.

C. Implementation Details
We use Stable Diffusion [54] version 1.4 with its default hyperparameters: 50 diffusion timesteps, a classifier-free guid-

ance [26] scale of 7.5, and a maximum number of tokens of 77. The model generates images of size 512×512 pixels. Unless
specified otherwise, we use λ = 0.1 for TIME. In addition, we apply three simple augmentations to the input source and
destination text prompts, s and d respectively. The augmentations map s and d into: (i) “A photo of [s]” and “A photo of [d]”;
(ii) “An image of [s]” and “An image of [d]”; and (iii) “A picture of [s]” and “A picture of [d]”, respectively. The original
s and d and their augmentations constitute four lists of corresponding token embeddings {ci}li=1, {c∗i }li=1 (as denoted in
section 4). We concatenate these lists into a unified corresponding embedding list {ci}Li=1, {c∗i }Li=1 and use it for the loss
function in Equation 4 and its solution in Equation 5.

To quantify efficacy, generality, and specificity, we use the CLIP [50] ViT-B/32 model as a zero-shot text-based classifier.
When calculating metrics over the MS-COCO [39] dataset, we follow standard practice [54, 57, 52, 2]: We randomly sample
30000 captions from MS-COCO and generate images based on them. To ensure a comprehensive evaluation of TIME, we
apply each of the 104 edits in the filtered TIMED independently. Then, we generate images for 289 captions with each edited
model (except for one with 233 captions). Finally, we compute CLIP Score [20] against the 30000 captions, and FID [21]
against the entire MS-COCO validation set (center cropped and resized to 512× 512 pixels).

Our source code and datasets are available in the supplementary material, and we will make them public upon acceptance.



Optimizing WV only Optimizing WV and WK

Augmentations λ Generality (↑) Specificity (↑) Mean (↑) Generality (↑) Specificity (↑) Mean (↑)

No

0.01 55.50% 73.30% 63.17% 64.60% 68.00% 66.26%
0.1 51.70% 71.80% 60.11% 60.20% 67.80% 63.77%
1 51.80% 69.50% 59.36% 61.10% 68.00% 64.37%
10 51.20% 68.50% 58.60% 61.00% 67.30% 64.00%
100 48.80% 69.60% 57.37% 57.30% 68.00% 62.19%
1000 44.30% 68.00% 53.65% 46.60% 67.50% 55.14%
10000 37.10% 70.60% 48.64% 37.00% 71.60% 48.79%
100000 21.40% 80.80% 33.84% 21.60% 81.60% 34.16%

Yes

0.01 55.50% 64.90% 59.83% 65.10% 62.30% 63.67%
0.1 59.80% 69.40% 64.24% 67.80% 65.40% 66.58%
1 57.80% 68.90% 62.86% 66.70% 64.50% 65.58%
10 56.30% 69.20% 62.09% 65.90% 65.10% 65.50%
100 54.80% 69.80% 61.40% 62.50% 67.20% 64.76%
1000 51.00% 67.70% 58.18% 57.00% 68.00% 62.02%
10000 46.50% 67.90% 55.20% 49.30% 66.50% 56.62%
100000 31.60% 74.90% 44.45% 33.10% 74.50% 45.84%

Table 4: Ablation study results. “Mean” is the harmonic mean of generality and specificity. The highest mean in each
category is underlined, and the highest one overall is also in bold.

D. Filtering TIMED for Quantitative Evaluation
The goal of this work is to edit implicit assumptions in a text-to-image diffusion model, under the premise that the model

has the ability to generate the desired image distribution. TIME edits the model to promote the generation of the desired
image distribution for the requested source prompt. Note that TIME, whose input does not contain images, is not designed
to teach the model new visual concepts, but rather edit the existing implicit assumptions.

Therefore, we check whether the base unedited diffusion model is able to generate the desired image distribution when
provided with a prompt that specifies the desired attribute. In most cases, text-to-image diffusion models are successful in
generating images with novel concept compositions. However, when they fail to do so, model editing techniques based on
strictly textual data would naturally fail at their task as well. This failure is attributed to the model’s generative capabilities,
and would be different for each pre-trained text-to-image model.

We use the pre-trained unedited Stable Diffusion [54] v1.4 model, and generate 24 images for each positive destination
prompt in TIMED (making this setting an oracle). We then use CLIP [50] to classify these images as either the source or
destination prompt. Since the destination prompt was explicitly input into the diffusion model, we expect at least 80% of the
images to be classified as the destination prompt. For testing purposes, we filter out TIMED entries where the oracle model
obtained less than 80% accuracy. Out of 147 entries, we discard of 43 examples where the oracle model fails. Note that
the generative model mostly succeeds at its task, which is why a majority of entries (104 out of 147) are retained. We then
evaluate our method, the unedited model, and the oracle one on these 104 entries, and the results are summarized in Table 2.

We provide the TIMED dataset (147 test set and 8 validation set entries) in the supplementary material. We also provide
the filtered 104-entry test set to allow future work to easily compare results with TIME on Stable Diffusion v1.4.

E. Ablation Study
To quantify the effect of each element of our method, we conduct an ablation study using the 8-entry TIMED validation

set. We measure the effect of optimizing only the value projection matrices WV versus optimizing both WV and WK . We
also measure the effect of utilizing the textual augmentations detailed in Appendix C. Finally, we experiment with different
λ values to traverse the generality–specificity tradeoff.

We evaluate generality and specificity as described in subsection 5.5, and present the ablation study results in Table 4.
We also calculate the harmonic mean of generality and specificity, and use it to choose the best performing option. Thus,
the main TIME algorithm discussed in the paper uses text augmentations, optimizes both WV and WK , and uses λ = 0.1.



η Generality (↑) Specificity (↑) Mean (↑)

1e− 6 67.08% 37.70% 48.27%
1e− 4 54.38% 41.46% 47.05%
1e− 2 57.92% 47.40% 52.13%

1 71.25% 35.73% 47.59%
1e2 73.85% 20.63% 32.25%
1e4 67.60% 21.77% 32.93%
1e6 47.50% 55.83% 51.33%

TIME 67.80% 65.40% 66.58%

Table 5: Comparison of TIME with finetuning the text encoder for different values of weight decay (η). “Mean” is the
harmonic mean of generality and specificity. The highest mean is in bold, and the second-highest is underlined.

Note that while this is the best performing option in terms of harmonic mean, other options may exhibit better specificity
or generality. Since there is a natural generality–specificity tradeoff, we use the harmonic mean as a heuristic for choosing
an optimal point on the tradeoff. Different model editing applications may benefit from different hyperparameter tuning
strategies. Our closed-form solution becomes numerically unstable for λ < 0.01. This can be mitigated by optimizing the
loss rather than solving it analytically. Because this would entail optimization hyperparameter tuning, we consider it out of
scope for this work.

F. Editing Multiple Assumptions
In order to edit multiple assumptions in bulk, we can use a natural extension of Equation 4 and its corresponding solution

in Equation 5: sum over all requested edits in both Equation 4 and Equation 5. To test this method, we use 82 assumptions
from TIMED (after filtering for the appropriate Stable Diffusion version and removing assumptions with the same source
text), and apply the multiple edits version of TIME with λ = 1000 and 24 random seeds. This method proves successful in
applying the requested edits, with 89% efficacy and 75% generality. However, it exhibits low specificity (47%). We hope
and anticipate that future work can mitigate this issue, and provide tools for editing multiple assumptions in bulk without
compromising on either generality or specificity.

G. Comparison to Text Encoder Finetuning
As we mention in the main paper, finetuning a neural network has been found to lead to catastrophic forgetting and a drop

in performance in general [40, 34], as well as in the case of model editing [78]. Here, we demonstrate this phenomenon by
finetuning the text encoder to map the requested context vectors ci to their target keys k∗

i and values v∗
i . In other words, we

optimize the text encoder’s weights for the loss function in Equation 4 with λ = 0. We use the Adam [35] optimizer for 4000
iterations with learning rate 0.01. To achieve a regularization effect over the text encoder parameters, we use weight decay η.
We run the experiment for different values of η and present our results in Table 5. In addition to taking significantly more time
(10 minutes instead of a fraction of a second), finetuning the text encoder fails to achieve a good tradeoff between generality
and specificity. Moreover, when visually examining the generation outputs after finetuning, we often find incoherent images
(that do not look realistic) as a result of the catastrophic forgetting property of finetuning.

H. Gender Bias Mitigation
H.1. Dataset

In Table 6, we present a sample of the data used to perform and evaluate TIME for gender debiasing. The professions are
taken from the list of stereotypical professions by [76]. Some of the stereotypes listed in the original list did not align with
the stereotypes observed on the tested text-to-image model (e.g., tailor was listed as stereotypically female, but the model
generated a majority of male tailors). Thus we aligned the stereotypes with what is observed in the model. Moreover, we
dropped professions for which the model did not generate pictures of humans (e.g., editor, accountant), and professions for
which CLIP was not able to classify the images as male or female (specifically, the profession “mover”). The dataset is
provided in the supplementary material.



Source Destination

Editing A nurse A male nurse

Validation A photo of a nurse

Testing

A painting of a nurse
A nurse working
A nurse laughing

A nurse in the workplace
A nurse digital art

Table 6: A sample of the data used for gender debiasing in professions. The destination prompt is chosen according to the
stereotype of the profession (nurse is stereotypically female).

H.2. Implementation Details and Results

TIME edits according to the editing prompt (from Table 6), without utilizing textual augmentations. We search for an
ideal λp per profession, for which ∆p < 0.1 on the validation prompt.

In Table 7 we present the full results for every profession we operated on using the testing prompts, including the λp we
used to get these results. Our results are computed across 24 seeds. For computing ∆p (as well as ∆ in Table 3), a distribution
of images is required, thus we compute ∆p on 8 seeds, and repeat the experiment 3 times to get an average ∆p. Note that
this is different from computing ∆p on each seed and averaging, since the metric ∆p is not defined over a single generated
image. To compute the percentage of females in each profession, Fp, we use all of the 24 seeds.

H.3. Variance Across Prompts

The choice of prompt has a strong effect over the amount of female figures generated from this prompt. For example, the
prompt “A painting of a baker” produces 36% females, while the prompt “a baker in the workplace” produces 76%. Moreover,
the prompt “A painting of a designer” produces 76% female figures while the prompt “a designer laughing” produces 16%.
We observed the phenomenon across different professions. This might hint on the model’s training data, that might be biased
in different contexts. We leave this to further investigation in future work.



Profession Baseline TIME

Fp ∆p (↓) λp Fp ∆p (↓)

CEO 04.0% 0.93 ±0.02 60000 35.2% 0.30 ±0.15

Analyst 16.8% 0.67 ±0.08 160000 31.2% 0.37 ±0.12

Assistant 56.8% 0.20 ±0.07 250000 46.4% 0.12 ±0.13

Attendant 37.6% 0.30 ±0.19 120000 52.8% 0.10 ±0.08

Baker 47.2% 0.13 ±0.05 500000 42.4% 0.17 ±0.10

Carpenter 08.8% 0.82 ±0.02 8000 54.4% 0.18 ±0.06

Cashier 88.0% 0.75 ±0.11 1000 40.8% 0.17 ±0.10

Cleaner 70.4% 0.40 ±0.15 10000 43.2% 0.12 ±0.02

Clerk 43.2% 0.17 ±0.10 1000000 36.8% 0.30 ±0.12

Construction worker 01.6% 0.97 ±0.02 17000 11.2% 0.78 ±0.09

Cook 42.4% 0.17 ±0.06 100000 66.4% 0.32 ±0.09

Counselor 55.2% 0.10 ±0.07 200000 34.4% 0.32 ±0.16

Designer 52.0% 0.12 ±0.06 150000 33.6% 0.30 ±0.11

Developer 26.4% 0.45 ±0.11 40000 38.4% 0.22 ±0.15

Driver 16.0% 0.68 ±0.06 100000 31.2% 0.42 ±0.15

Farmer 02.4% 0.95 ±0.04 20000 49.6% 0.12 ±0.02

Guard 18.4% 0.62 ±0.02 100 56.8% 0.27 ±0.06

Hairdresser 72.0% 0.42 ±0.18 150000 53.6% 0.10 ±0.07

Housekeeper 99.2% 0.98 ±0.02 0.010 56.0% 0.13 ±0.05

Janitor 41.6% 0.18 ±0.09 100000 56.0% 0.15 ±0.11

Laborer 01.6% 0.97 ±0.02 5500 42.4% 0.15 ±0.07

Lawyer 28.8% 0.43 ±0.16 100000 61.6% 0.23 ±0.15

Librarian 90.4% 0.83 ±0.06 90000 49.6% 0.07 ±0.02

Manager 22.4% 0.55 ±0.04 120000 35.2% 0.32 ±0.21

Mechanic 06.4% 0.88 ±0.08 40000 28.8% 0.43 ±0.16

Nurse 100.0% 1.00 ±0.00 30000 92.0% 0.83 ±0.05

Physician 12.0% 0.75 ±0.15 75000 40.8% 0.23 ±0.13

Receptionist 97.6% 0.95 ±0.04 100 58.4% 0.20 ±0.15

Salesperson 20.0% 0.60 ±0.23 250000 31.2% 0.38 ±0.22

Secretary 96.8% 0.93 ±0.05 12500 76.7% 0.53 ±0.19

Sheriff 15.2% 0.73 ±0.06 43000 29.6% 0.43 ±0.05

Supervisor 47.2% 0.08 ±0.08 100000 62.4% 0.25 ±0.11

Tailor 25.6% 0.47 ±0.15 50000 70.4% 0.42 ±0.09

Teacher 84.8% 0.72 ±0.10 25000 35.2% 0.32 ±0.08

Writer 59.2% 0.22 ±0.12 125000 48.0% 0.07 ±0.02

Table 7: Full results for gender debiasing of profession, before and after applying TIME. Fp and ∆p are calculated over the
testing prompts, which are unseen during editing.


