
Method " PSNR " SSIM # LPIPS Inference
Time

w/o progressive 26.15 0.918 0.098 56min
full model 26.15 0.918 0.098 17min

Table 10. Effectiveness of progressive rendering strategy. The
progressive rendering strategy can reduce the inference time by
around 70% while without influencing the performance.

Method " PSNR " SSIM # LPIPS
NHP 25.65 0.917 0.148
GP-NeRF 26.46 0.918 0.158
Ours 28.08 0.939 0.087

Table 11. Fitting performance on training frames. Our method
shows the best fitting ability compared with previous methods.

Method " PSNR " SSIM # LPIPS
w/o LPER 26.16 0.916 0.146
full model 26.15 0.918 0.098

Table 12. Influence of perceptual loss. Perceptual loss mainly
improves the LPIPS with less effect on PSNR and SSIM.

A. Progressive Rendering
GP-NeRF [6] has proposed a progressive rendering strat-

egy using the coarse geometry provided by the output 3D
feature volume of SPC to reduce the number of render-
ing points. Although there is no SPC in our framework,
we find that simply using the fitted SMPL as the alterna-
tive works pretty well. Specifically, after sampling points
on marched rays from the target view, we only render the
points whose euclidean distance to the SMPL template is
smaller than 0.1m. Then, for these close points, we first
get the density values for all of them, and then only send
part of them whose density value is larger than 0 for the
following color inference, which is in line with [6]. The ef-
fectiveness of this strategy is illustrated in Table 10. While
without decreasing the performance, the inference time is
reduced by around 70%. Notably, even without using such
accelerating strategy, the inference is still over 2 times faster
than NHP [19] (56min vs. 1h55min, Table 9). This strongly
proves the efficiency of our method.

B. Performance on Training Frames
Following previous methods [19, 6], we report the fitting

performance on the training set in Table 11. We achieve the
best fitting performance among the generalizable methods,
which shows the superior capacity of our method.

C. Additional Ablation Studies
We provide more detailed ablation studies in this section.

C.1. Influence of Perceptual Loss
In Table 12, we demonstrate the influence of perceptual

loss. Obviously, perceptual loss can largely improve the
LPIPS, i.e., make the results visually pleasing, while shows

Canonical Grid Voxelization Canonical K-means (Ours)

Figure 8. Comparisons of vertex number distributions between
canonical grid voxelization and canonical k-means. Canonical
k-means gives more uniform split with smaller variance.

Method " PSNR " SSIM # LPIPS
can. grid voxelization 26.01 0.917 0.100
can. k-means (ours) 26.15 0.918 0.098

Table 13. Comparisons between using k-means and grid vox-
elization in canonical body grouping.

less effect on PSNR and SSIM. Without perceptual loss, we
still outperform previous methods by consistent margins in
PSRN and SSIM.

C.2. Canonical K-means vs. Canonical Grid Vox-
elization

In canonical body grouping, we employ the k-means
clustering to get the grouping dictionary. Actually, using
grid voxelization under the canonical space is also feasible.
However, the uniform grid leads to the large variance of
vertex number in each voxel considering the shape of hu-
man body, as shown in Fig. 8. Therefore, we use k-means
instead for a more uniform split. As illustrated in Table 13,
canonical k-means performs better than canonical grid vox-
elization.

D. Additional Visualization Examples
We provide more comparison examples with previous

state-of-the-art methods in Fig. 9.

E. Human Split
We list the detailed human split information in Table 14.

We hope that it can serve as a standard split for the fol-
lowing researchers. The code will also be available upon
acceptance.



GT
Identity GeneralizationPose Generalization

GP-NeRF NHP Ours GT GP-NeRF NHP Ours
Cross-dataset Generalization

GT NHP OursInput
One-shot Generalization

GT NHP Ours

Figure 9. Supplemented visualization examples on ZJU-MoCap [33] (pose generalization, identity generalization, one-shot gener-
alization) and H36M [16] (cross-dataset generalization).



Human ID [Start, End) Interval Frame Number Total Frames Reference View Target View
Training Frames

313 [0, 60) 1 60⇥ 21

7589

Rand 3 Rand 1
315 [0, 400) 6 67⇥ 21 Rand 3 Rand 1
377 [0, 300) 30 10⇥ 23 Rand 3 Rand 1
386 [0, 300) 6 50⇥ 23 Rand 3 Rand 1
390 [700, 1000) 6 50⇥ 23 Rand 3 Rand 1
392 [0, 300) 6 50⇥ 23 Rand 3 Rand 1
396 [810, 1080) 5 54⇥ 23 Rand 3 Rand 1

Pose Generalization
313 [60, 1060) 30 34⇥ 6

798

0, 7, 15 3, 5, 10, 12, 18, 20
315 [400, 1400) 30 34⇥ 6 0, 7, 15 3, 5, 10, 12, 18, 20
377 [300, 617) 30 11⇥ 6 0, 7, 15 3, 5, 10, 12, 18, 20
386 [300, 646) 30 12⇥ 6 0, 7, 15 3, 5, 10, 12, 18, 20
390 [0, 700) 30 24⇥ 6 0, 7, 15 3, 5, 10, 12, 18, 20
392 [300, 556) 30 9⇥ 6 0, 7, 15 3, 5, 10, 12, 18, 20
396 [1080, 1350) 30 9⇥ 6 0, 7, 15 3, 5, 10, 12, 18, 20

Identity Generalization
387 [0, 654) 30 22⇥ 6

438
0, 7, 15 3, 5, 10, 12, 18, 20

393 [0, 658) 30 22⇥ 6 0, 7, 15 3, 5, 10, 12, 18, 20
394 [0, 859) 30 29⇥ 6 0, 7, 15 3, 5, 10, 12, 18, 20

One-shot Generalization
387 [0, 654) 30 22⇥ 6

438
0 3, 5, 10, 12, 18, 20

393 [0, 658) 30 22⇥ 6 0 3, 5, 10, 12, 18, 20
394 [0, 859) 30 29⇥ 6 0 3, 5, 10, 12, 18, 20

Cross-dataset Generalization
S1 [0, 750) 150 5⇥ 1

54

0, 1, 2 3
S5 [0, 1250) 150 9⇥ 1 0, 1, 2 3
S6 [0, 750) 150 5⇥ 1 0, 1, 2 3
S7 [0, 1500) 150 10⇥ 1 0, 1, 2 3
S8 [0, 1250) 150 9⇥ 1 0, 1, 2 3
S9 [0, 1300) 150 9⇥ 1 0, 1, 2 3
S11 [0, 1000) 150 7⇥ 1 0, 1, 2 3

Table 14. Detailed human split. For ZJU-MoCap [33] (training frames, pose, identity, and one-shot generalization), we follow the human
split from the officially released code of NHP [19], while for H36M [16] (cross-dataset generalization), we follow the split from [31].
Note that in ZJU-MoCap, “313” and “315” only contains 21 camera views, while the left ones have 23 camera views.


