
Supplementary Material

In this document, we provide further details about the
implementation, evaluation and optimizations.

Maximum Pooling

In the original DeltaCNN implementation, maximum
pooling layers process the result for newly accumulated
inputs and for previously accumulated inputs, which is then
subtracted to obtain the Delta output of the layer. In Motion-
DeltaCNN, this approach does not work anymore as soon as
regions inside the accumulated input values buffer are reset
to zero. When the pooling kernel accesses a pixel’s neighbor-
ing pixels, with some of them reset and others retained from
previous frames, the output for the previous frame cannot
be processed correctly anymore - leading to incorrect Delta
values. We solve this using an additional buffer storing the
previous output of a pixel. Since the Delta value is always
relative to the previous output, storing it implicitly solves
the dependency on neighboring pixel states. Each pixel was
either reset itself in the current frame - in this case, we pro-
cess the Delta against a zero reference - or it was retained
from previous frames - in which case we process the Delta
against the previous output.

Video Object Segmentation Evaluation Details

In video object segmentation, we reduce the update rate
by scaling updates outside the region of interest, i.e., the
segmentation mask of the previous frame. We dilate the
previous mask multiple times using maximum pooling with
different kernel sizes (10, 20, 40) and compute the average
pixel values of the three masks m. The image Delta is then
scaled using a factor of 0.4 + 0.6 ∗m before comparing it
against the truncation threshold.

The truncation thresholds for BMVOS are auto-tuned on
a sequence from the training dataset (tractor-sand) using a
threshold of 0.02 as a starting point for all layers but the
first. The first layer uses 0.15 and an update mask dilation
of 10 pixels (a single pixel update would be dilated over
21x21 pixels). We do not use the same, sensitive thresh-
olds for DeltaCNN since they lead to dense updates nearly
every frame due to the lack of image alignment. Instead,
we increase the threshold of the first layer to 0.2 and auto
tune the remaining thresholds on the same sequence without
frame alignment. This leads to a slightly lower accuracy for
DeltaCNN than for MotionDeltaCNN. We deliberately target
a lower accuracy when tuning the thresholds for DeltaCNN
since we aim to show that we outperform DeltaCNN even
when they are allowed to truncate updates more aggressively.
The auto-tuning procedure is implemented as an iterative
front-to-back process as described in DeltaCNN [3].

Further Optimizations

Implicit bias application Adding biases onto newly allo-
cated tiles requires launching a separate kernel on the GPU
after every convolutional and batch normalization layer if
they use biases. However, layers that are directly followed by
activation & truncation layers can skip this step and add the
bias implicitly during activation. By initializing the newly
allocated tiles of the activation layer’s truncated values buffer
with the bias instead setting it to zero, the bias is automat-
ically added when applying the activation. This way, we
can reduce the overhead of attaching new tiles to existing
buffers.

Optimizing memory consumption The memory over-
head of MotionDeltaCNN can be a limiting factor on low-
end hardware. But in many cases, memory consumption can
be reduced by disabling truncation on selected activation
layers at the cost of increased sparsity. For example, the
DenseNet [2] backbone of BMVOS [1] consists mainly of
pairs of 3x3 and 1x1 convolutions. In this network, we only
truncate in the activation layer following a 3x3 convolution
in which updates are dilated. This way, every second activa-
tion layer needs only an accumulated values buffer - saving
50% of the layer’s memory at the cost of slightly higher
update rates.

Qualitative Results Human Pose Estimation

Figure 1 displays a qualitative comparison between
the joint positions predicted using the dense reference,
DeltaCNN and MotionDeltaCNN. As can be seen in this
example, the predicted joint locations are identical in a all
3 cases for the majority of the joints. However, in some
cases, small differences between the approaches can be
noticed. The most significant being in Frame 40, where
MotionDeltaCNN predicts two joints incorrectly, whereas
DeltaCNN and the dense reference each only have one in-
correct prediction. At closer inspection, it can be seen that
the predicted joint position of the elbow only varies slightly
between the dense reference and MotionDeltaCNN, just
enough to exceed the accuracy threshold.

References
[1] Suhwan Cho, Heansung Lee, Minjung Kim, Sungjun Jang,

and Sangyoun Lee. Pixel-Level Bijective Matching for Video
Object Segmentation. Proceedings - 2022 IEEE/CVF Winter
Conference on Applications of Computer Vision, WACV 2022,
pages 1453–1462, 2022.

[2] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional networks.
Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, 2017-January:2261–2269,
2017.

1



Dense

DC

Ours

Frame 0 Frame 10 Frame 20 Frame 30 Frame 40 Frame 50 Frame 60

Figure 1: Qualitative comparison between conventional, dense inference, DeltaCNN (DC) and MotionDeltaCNN using HRNet
on the Human3.6M dataset. For better visibility, we zoomed in closer to the subject (2x zoom). White markers are the ground
truth joint positions. Green and red are the predicted joint positions, with red indicating an incorrect prediction according to
PCKh@0.5.

[3] Mathias Parger, Chengcheng Tang, Christopher D. Twigg, Cem
Keskin, Robert Wang, and Markus Steinberger. Deltacnn: End-
to-end cnn inference of sparse frame differences in videos. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12497–12506, June
2022.

2


