Supplementary Materials

A. Supplementary to the Analysis of Hidden Classifier
A.1. Proofs for the properties of hidden classifier

Notation (detailed) Each hidden layer feature a(!) is defined by consecutive computation of the post-activated feature
vector
al) = g(WhTall-1) (11)

from the input layer [ = 0 to the last hidden layer [ = L. The pre-activated features satisfy al). = & (z(!)), where the
activation function o is a rectifier (e.g. ReLU, GeLU, Leaky ReLU). The penultimate embedding is g(x) = UTa®), which
computes the network classification logit 1)(x) € R¥ by

Y(x) = Whg(x). (12)

W is the weight matrix for the classification layer. For notation simplicity, let W41 := UW such that ¥(x) =
W (EHD) a(L) | The sign function sign(-), on the other hand, that binarizes a scalar to either 1 or —1 is applied point-wise.

Note For the embedding computation, U is a fixed identity matrix in supervised models, while U serves as a learnable
parameters for self-supervised models with projection head [5].

Proposition 1. The final logit is represented by

¥(x) = cVall (13)
for each hidden layer [, where
L—1-1
c® — ( H W(L+1—k)TD(L—k)> wHDT (14)
k=0
with DU = diag(@7 e %{jl)) with the convention 5 = 0. C) = C(x) € RE*% depends on x.
1 1
Proof. Observe inductively that
Y(x) = WEFDT /(D) (15)
= WEADT (L), (L) (16)
_ W(L+1)TD(L)W(L)Ta(L—1) (17)
_ W(L+1)TD(L)W(L)TD(L—1)Z(L—1) (18)
=, (19)
obtaining
L—i-1
P(x) = ( H W(L+1k)TD(Lk?)> WHDT 40 (20)
k=0
O

Remark. We note that both D) = D®)(x) and C) = C()(x) depend on x as they depend on a(!). Also, note that the
dimension of C® is K x dj.

Recall that CO = [, ... c{]7.

Proposition 2. Ler (x,y) be arbitrary labeled ID sample. Suppose that 1,/(X) is maximized in a manner to reduce the angle

?(,l) and a®V) sufficiently that sign(c?(j)) = sign(a®). Suppose that 1y, (x) is minimized in a manner to increase the

angle between c,(cl) and aV) sufficiently that L(sign(cg)), a)) > /2. Then, @(l) becomes a discriminative classifier with

50 (%) > 9 (x).

between ¢



Proof. For notational simplicity, ignore the superscript index [/, and let a = a®, b, = bg), cL = cg), and E = @(l). First,
observe b, = sign(c,) = sign(a) implies 0 < £(b,,a) < /2. Therefore,

¥, (x) = by -a=|by]2]|a]2cos(£(by,a)) > 0. 2n
On the other hand, £ (sign(cg),a) > 7/2 means m > £(by,a) > 7/2 by the definition of by, for k # y. Therefore,

¥i(x) = b - a = ||bi||z[all2 cos(£(by, a)) < 0. (22)
Since (x,y) was arbitrary, we have proved the desired. O

The main message of Prop. 2 is that the discriminative optimization of the original classifier should be powerful enough to
optimize the angle between the hidden layer feature and the binary weight. Then, in this case, the hidden classifier becomes
discriminative.

Theorem 3. Under the sufficient condition of Prop. 2, for any labeled ID sample (x,vy),
) —(0) _ —(1)
[a™[|1 converges to ¥, (x) = max Py (%) (23)

in which case Sign(a(l)) = b@(,l). In general, for any k and for any sample x (either ID or OOD),

—(1) . 1
0 < a® -9y (x) < a® | [sign(@®) — b 1. (24)

Proof. For notational simplicity, ignore the superscript index [, and let a = a®, b, = bg), CL = c,(f), and E = E(l). First,
observe that

lally = lail =) brias = by - a =1 (x) (25

where by, = (bg1, . .., bra,) € {—1,1}%. This proves that ||al|; > 1, (x) for all k.
Now, observe that |a;| = sign(a;)a;. Therefore,

lafls =4y (x) = > (sign(ai) — bi)a; <Y _|sign(a;) — brllai| < [lallo[Isign(a) — by, (26)

proving a general upper bound of the difference between the hidden classifier output and the feature norm.
Now, under the sufficient condition of Prop. 2, the binary weight becomes the activation pattern by the assumption;
sign(a) = b,. Therefore, in this case,
0 < lafly =%, (x) < [lallec - 0 =0, @27

proving the desired. O

Corollary 4. If maxy ES) (Xo0d) IS sufficiently small such that

m}glx@,(cl)(xood) +6< m}gxﬂg)(xmd) (28)
for all ID samples X;nq where
5 > [|a® (xo0) oo - Isign(a® (xo0a)) = bi. |1 (29)
and ko = arg maxy, Eg)(xood), then
12 (xo0a) i < [la" (xina)lh (30)
for all ID samples X;nq.
Proof. By Thm. 3,
—(1) . —(1)
8 (ko)1 < 5 (Kaoa) + 2% (o)l Isign(a®) (o) — B2 1 < max T4 (xing) < |20 xina) 1. B1)



A.2. Additional Theoretical Consideration

We present additional results of the theoretical analysis on the hidden classifier.

A.2.1 Relation to General /,,-norms

We have proved that /;-norm can differentiate OOD from ID. This capability of /;-norm extends to the general [,,-norm by
Holder’s inequality.

Theorem 5 (Holder’s inequality). For 0 < p < ¢ < oo and x € RY,
Ixllg < llxl, < d/P=H9) x|, (32)
Thus, for an activation vector a) € R% and for p > 1, we have
1
la® ], < a® 1 < d; 72, (33)

Therefore, if |al’)|; is large or small, then [|a(!)||,, is also large or small, respectively. Thus, different /,,-norms have similar
mechanisms for OOD detection. Note, however, that different ,-norms have different priors on the computation of units in
the activation vector. Accordingly, the OOD detection performance will vary depending on which /,-norm is used.

A.2.2 Extension to Pre-Activation Layer

Extending the framework in Sec. 3 to the pre-activation layer feature vector z(") is trivial, where the pre-activation layer
feature is the vector satisfying alt) = o(z) with the activation function o. Here, we provide the properties of the pre-
activation layer that correspond to the ones given in Sec. 3.

Proposition 6. The final logit is represented by

¥(x) = €020 (34)
for each hidden layer [, where
o — (Ll_[_l W(LJrlk)TD(Lk)) (35)
k=0
with D) = diag(%zll)7 ey @) with the convention 5 = 0. CO = a(l)(x) € RE*d depends on x.

‘1

Define a hidden classifier corresponding to z() by

~

P(x) = sign(a(l))z(l) =B®z0 (36)
where C) = [Egl), . ,E%)}T and BO = [B§”, .. .,B(I?]T.

Proposition 7. Let (x,y) be an arbitrary labeled sample. Suppose that 1, (x) is maximized in a manner to reduce the angle

) (0
Y

between T, and 2V sufficiently that sign(cy’) = sign(z()). Suppose that 1y (x) is minimized in a manner to increase the

angle between ’c\g) and z sufficiently that A{(sign(ﬁg)), z\) > 7/2. Then, 12(1) becomes a discriminative classifier with

P (x) > 9 ().

Theorem 8. Under the sufficient condition of Prop. 7,
|20|; converges to zzg(/l) (x) = max zZ)\,(Cl)(x) 37

in which case sign(z(!)) = lA)?(,l). In general, for any k

0< 1201 — dr(x) < 20| |lsign(z®) — b ||y (38)



A.2.3 On Bias

In Sec. 3, we ignored the bias in the computation of features for simplicity. We can preserve the properties of features given
in Sec. 3 while including the bias terms. To observe this, consider

al) = (WOTa(-1 4 g0y — pOWOT{0-1) L pOgH. (39)

Thus, if ¥ denotes the logit computed with bias, then

L
U(z) = CVal) + 3" CUTHBUT) = y(z) + T (40)

J=l

with T' = T'(],x) = Zle CU+DBU*Y and the convention that C(“+1) = 1. Hence, if the discriminative learning of ¥
is not trivially achieved by the optimization of the bias term I', and if the discriminative learning of ¢ is thus sufficiently
powerful, then the properties in Sec. 3 hold.

A.2.4 On Cosine Similarity Logit

We assumed that the classification logit is the output of the inner product in Sec. 3. Here, we show that changing the inner
product logit by a (scaled) cosine similarity logit does not alter the major behavior of discriminative learning, and hence they
are equivalent in our theoretical consideration. Thus, the theory developed in the inner-product logit also holds in the (scaled)
cosine similarity logit.

To observe this, note that the scaled cosine similarity logit is defined as

_Lowe ok
)= T wels TeGol N

where w, are class weight vectors (prototypes) of trainable parameters and g(x) = U”a(l) with a matrix U of trainable
parameters. 7" is the temperature that modifies the scale of similarity. Without loss of generality, we assume 7" = 1. Let
Y (x) = wy, - g(x) denote the inner-product logit that we originally used. Thus, we have

(@) = vi(z)([wrll2llg(x)]2) 7" 42)
During discriminative learning, the model maximizes
(=1 on(x) = (=1 v (x) (| wil|2llg(x) | 2) 7 43)

Assuming ¥, (x) = w,, - g(x) > 0 and ¢ (x) = wy, - g(x) < 0, the above maximization is equivalent to minimizing its
negative log

—log((—1)"v#* i (x)) = —log ((—1)"v#* (%)) +log (| will2llg(x)|2) , (44)
which can be considered as the constrained minimization of
—log ((—=1)'v* ¢y (x)) = —(—1)"v=* ey (x) (45)
constraint to
[will2llg(x)]2 < e™ =n (46)

for some 7. Thus, optimization of the cosine similarity logit is equivalent to the constrained optimization of the inner product
logit.

Proposition 9. The maximization
mjx (—1) 7" gy (x) 47)

is equivalent to
max (~1)! 4 (x)
v (48)
subjectto [[wyll2[lg(x)ll2 <7

for some n > 0if 1, > 0and 1, < 0.
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Figure 8: Results of hidden classifiers of ResNet-18 with different class labeling schemes on CIFAR-10. The approximation error on the
target unit measures the normalized error (||all1 — %, (x))/l|a||1, while the approximation error on the non-target unit is the average of

(llalls — ¥, (x))/||al|1 with respect to k # y. In the case of post-activation, the vector a is a = a'™). In the case of pre-activation, the
vectoraisa =z

A.3. Supplementary to empirical validation of hidden classifier

Here, we provide a detailed description of the experiments conducted to validate the theoretical analysis presented in
Sec. 3.

A3.1 OnMLP

Setup We train an MLP with 5 hidden layers. The hidden layer dimension is fixed to 512, and likewise for the embedding
layer dimension. The embedding is normalized, and the cosine similarity logit is divided by a temperature of 0.1. The model
is trained by AdamW for 200 epochs with batch size 256. The learning rate decays from 0.001 to O by the cosine scheduler.
Other setups follow the default setting in PyTorch.

Results The results are given in Fig. 12, 13, and 14. They have similar trends that we expected and thus verify our
theoretical claims.

A.3.2 On Convolutional Network

Setup The experiment setup is given as in Sec. B.

Results In the cases of both instance discrimination (I), supervised learning (S), and random binary label discrimination
(R), the hidden classifier of the last hidden layer in ResNet-18 is trained to be discriminative (Fig. 8).

B. Supplementary to the Analysis of Feature Norm’s Class Agnosticity

Setup. We train a ResNet-18 on CIFAR-10. We add an MLP projection head as in MoCo-v2 [5]. The embedding is
normalized, and the cosine similarity logit is divided by a temperature of 0.1. The model is trained for 200 epochs and batch
size 256 with the SGD optimizer, cosine learning rate (0.06 to 0), and momentum 0.9. Each model is trained in a different
manner based on a different class labeling scheme:

 S: The class labels y; are supervised labels (e.g. plane, dog, cat, ...). No data augmentation is applied.
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Figure 9: (a) The detection performance of NAN versus the learning epoch across different types of training schemes (b) The generalization
gap of NAN based on the intra-class semantics.
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Figure 10: The graph of the detection performance versus the activation entropy. The performance is measured at every training epoch.
* I: The class labels y; are instance labels y; = 7. No data augmentation is applied such that each instance class has only
one intra-class sample.

* Is: The class labels y; are instance labels y; = 7. Data augmentation is applied such that each instance class has multiple
intra-class samples.

* R: The class labels y; are labeled randomly by a binary number y; € {0, 1}.

O: The class labels y; are labeled with a single label y; = 0 such that every sample is in the same class.

Other setups follow the default setting in PyTorch.

Full results on the impact of inter/intra-class learning The additional results on NAN is given in Fig. 9, which NAN
exhibits the same trend of memorization and generalization as the conventional feature norm.

Full results on the relation to entropy The full results on the relation between the activation entropy and the detection
performance is given in Fig. 10.
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Figure 11: Activation patterns of randomly chosen 50 ID samples after training. Each column corresponds to the activation pattern
sign(a®)e{—1,1}°'2 of an ID sample. Discriminative training {S,R,I,Is} results in diverse activation patterns, while the activation
pattern collapses for the non-discriminative model O.

On the activation pattern If the model is trained in a non-discriminative manner with a single class, then the entropy of
activation is diminished. In this case, the activation pattern collapses as shown in Fig. 11.

C. The Detailed Setup for the Experiments on NAN
C.1. Setup

Setup: ImageNet-1k For the supervised model trained by the cross entropy, we utilize the ResNet-50 backbone trained on
ImageNet-1k. The model is provided by the PyTorch model zoo.

For the supervised model trained by the contrastive loss (thanks to the authors of [42]), we utilize the pretrained ResNet-50
model provided from the official GitHub page of KNN [42], which is trained on ImageNet-1k by the supervised contrastive
loss [23] with the MLP projection head.

For the self-supervised contrastive model trained without the supervised labels of ID, thanks to the authors of MoCo-v2,
we utilize the pretrained MoCo-v2 model provided from the official GitHub page of MoCo-v2 (the one with 71.1 accuracies
on ImageNet-1k).

Setup: OOD CIFAR-10 For the evaluation results of OOD detection ‘with supervised labels of ID’ in Table 3, we train
a cross-entropy model with supervised labels of CIFAR-10. The model has trained on CIFAR-10 over 800 epochs with the
SGD optimizer and its momentum is 0.9. The learning rate decays to 0 from 0.03 by the cosine scheduler. The batch size
is 512. The backbone is ResNet-18, accompanied by an MLP projection head on top of the encoder as in MoCo-v2. The
embedding is normalized, and the cosine similarity logit is divided by the temperature 0.1.

For the evaluation results of OOD detection ‘without supervised labels of ID’ in Table 3, we train MoCo-v2 on CIFAR-10.
The model is trained over 800 epochs with the SGD optimizer and its momentum 0.9. The batch size is 512. The learning
rate is decayed by the cosine scheduler from 0.06 to 0. The model backbone is ResNet-18 combined with an MLP projection
head. For the other configurations, we follow those given in the link'. After training the MoCo-v2 model, the NAN score
is computed over multiple (9 overall) translated images of the test sample including the original image, and the scores are
aggregated by average [43]. This aggregation technique is used exclusively for the model trained by MoCo-v2.

Setup: OOD CIFAR-10 The model training configuration for OCC is similar to that of label-free OOD detection on
CIFAR-10 except that the train dataset is augmented randomly with 90-degree rotations. During the inference, the rotation is
not used.

C.2. Score Fusion

A distance-based score Syist(x) = d(Xina, x) (e.g. KNN, SSD, or Mahalanobis) can be combined with NAN in a simple
manner by

Saistenan (x) = d(Xina, x)/||a™| nan- (49)

Inttps://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_
cifarl0_demo.ipynb


https://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_cifar10_demo.ipynb
https://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_cifar10_demo.ipynb

AUROCYH FPRYS.,

ID Architecture Last hidden layer al) [1-norm / NAN [1-norm / NAN

CIFAR-10 ResNet-18 average pool 93.27/93.56 (+0.29)  40.42/38.86 (-1.56)
ResNet-18 + projection head hidden layer in projection head ~ 92.43/94.94 (+2.51)  43.02/30.08 (-12.94)
ResNet-50 average pool 87.09 / 86.33 (-0.76) 44.67 /1 46.56 (+1.89)

TmageNet- 1k o Net-50 + projection head  hidden layer in projection head  57.99/92.32 (+34.33)  95.22/31.59 (-63.63)

Table 6: Ablation of NAN with respect to the projection head. The sparsity term in NAN is particularly effective when applied to the
network architecture that contains the MLP projection head. Note that the /1 -norm here refers to the NAN score without the sparsity term.
The reported performance here is obtained by averaging over all test OOD datasets.

ReLU Leaky ReLU GeLU
AUROCT FPR95| AUROCT FPR95| AUROCT FPR95]

NAN w/o sparsity term (I -norm) 92.43 43.02 92.40 44.65 92.68 43.84
NAN 94.94 30.08 94.92 30.56 94.05 35.02

Table 7: Ablation of NAN with respect to the activation functions used in the last hidden layer. The ID data is CIFAR-10. The results
indicate two aspects: (1) The performance of NAN is fairly robust with different choices of the activation function. (2) The sparsity term
in NAN is always effective. The reported performance here is obtained by averaging over all test OOD datasets.

ID ImageNet-1k CIFAR-10
Formula d  AUROCt FPR9S| | d AUROCT FPR95|

embedding magnitude  ||g(x)||2 128 84.09 72.85 | 128 93.00 43.40
NAN w/o sparsity term  ||a(®)||; 2048  57.99 9522 | 512 9240 43.00
NAN at®)|lwan | 2048 92.32 31,59 | 512 94.90 30.10

Table 8: Comparison of NAN with the embedding magnitude. The embedding magnitude has been widely used in previous works. Here
d indicates the dimension of the corresponding layer. The dimension of the embedding layer is often chosen small for effective training
of the model. Due to its small layer dimension, the embedding magnitude may not fully capture the activation patterns, and hence can be
sub-optimal. The reported performance here is obtained by averaging over all test OOD datasets.

D. Further Analysis on NAN

Setup We follow the same setup given in Sec. 6. When CIFAR-10 is the ID data, the test OOD datasets are LSUN-fix,
ImageNet-fix, CIFAR-100, SVHN, and Places. When ImageNet-1k is the ID data, the test OOD datasets are iNaturalist,
SUN, Places, and Texture.

D.1. Analysis on Projection Head

We analyze NAN with respect to the projection head. Table 6 indicates that NAN is more effective when it is applied to
the hidden layer of the projection head rather than the average pooling layer.

NAN (i.e. particularly its sparsity term) becomes effective when the network learns to increase the number of deactivated
units of ID samples (or have a relatively larger number of deactivated units for ID samples than OOD instances). Due to the
entanglement of the feature map units in the average pooling layer, the network may not effectively increase the number of
deactivated units in the average pooling layer. Hence, NAN can be sub-optimal for the average pooling layer.

D.2. Analysis on Activation Function

We evaluate NAN with different activation functions. We follow the same experimental protocol given in Sec. 6.3. We
apply different activation functions in the hidden layer of the projection head. The results given in Table 7 shows that NAN
is robust with respect to the choice of the activation function.

D.3. Comparison with Embedding Magnitude

For the sake of extensiveness, we compare NAN with the embedding magnitude. The embedding magnitude has been
widely used in prior works for OOD detection-related tasks. The dimension of the embedding layer is often chosen to be
a small number to avoid the curse of dimensionality during training. This may have a trade-off to OOD detection as the



OOD iNaturalist SUN Places Texture Average

AUROCT FPR9S| AUROC} FPR9S| AUROCT FPROS| AUROCT FPR9S|, AUROCT FPRos| DACC
MSP 89.63 5057  80.64 7554 7978 7624 8298 6514 8326 6687  81.07
Energy 8376 4968 5650 7522 5477 7838 7244 6509 6687  67.09  81.07
Mahalanobis 9196 4376 7562 8601 6150 8974 8460  67.93 7842 7186  81.07
KNN 9143 5004 8345 7576 7946 7841 8925 5078 8590 6375  81.07
embedding magnitude 8126 6616 7864 6744 7581 6937 8293  ST11 7966 6502  81.07
NAN w/o sparsity term (i.e. [y-norm) 5493 8398  67.05 8047 6525 8101  67.87 7254 6378 7950  81.07
NAN 9246 4582 8211 6762 8046  69.66 8724 5777 8557 6022  81.07

Table 9: Results on ImageNet-1k (ID) with ViT-B/16.

test OOD datasets LSUN-fix ImageNet-fix CIFAR-100 SVHN Places Average
Score Formula AUROCI FPR95, AUROCI FPR9S, AUROCT FPR9S, AUROCI FPR9S| AUROCI FPR9S, AUROC FPRYS,
hidden classifier | S0y 9506 3335 9454 3592 9217 4500 9466 3991 9466  30.15 9422 36.89
confidence

Table 10: Results on CIFAR-10 (ID) with ResNet-18. The hidden classifier confidence is evaluated as a score function for OOD detection.
The results shows that the hidden classifier confidence is capable of OOD detection.

embedding of a small dimension may not capture diverse activation patterns of embedding layer units and therefore its norm
may not effectively differentiate OOD from ID. This hypothesis seems consistent to the results given in Table 8.

D.4. Evaluation of NAN on ViT

We evaluate NAN on the vision transformer ViT. We utilize ViT-B/16 pretrained on ImageNet-1k, which can be down-
loaded from PyTorch®>. Analogous to the observations in Sec. D.1, direct usage of NAN on the pretrained ViT can be sub-
optimal because the class token output of ViT is the LayerNorm layer, which can cancel out the norm information therein.
Therefore, we add an MLP projection head on top of the pretrained ViT, and fine-tune the projection head while freezing
the pretrained ViT backbone. The MLP projection head consists of a single hidden layer whose dimension is 786 and its
activation function is ReLU. The embedding of the projection head is normalized and divided by the temperature 0.2, and
trained by the cross entropy with 10 epochs under SGD, using the learning rate 0.03 that decays to 0 by the cosine scheduler.

For comparison, the KNN and Mahalanobis scores are applied on the original class token output of the pretrained ViT,
and hence are independent of the projection head fine-tuning. Other OOD detection scores (MSP, Energy, and embedding
magnitude) are applied to the fine-tuned classifier of the projection head. NAN utilizes the hidden layer in the projection
head as this layer is the last hidden layer that involves the activation function computation.

Table 9 shows that NAN is effective for the ViT network as well. In addition, NAN is comparable to the state-of-the-art
OOD detection scores.

Note on the ViT performance of KNN Note that the performance of KNN in Table 9 is lower than that of KNN reported
in [42]. This is because the KNN we implemented is applied on ViT pretrained on ImageNet-1k, while the KNN reported in
[42] is applied on ViT pretrained on ImageNet-21k.

D.5. Evaluation of Hidden Classifier for OOD Detection

We evaluate the hidden classifier for OOD detection. NAN’s numerator is the /;-norm of the activation vector, which
we proved is a confidence value of the hidden classifier. We test this numerator component by testing the OOD detection
capability of this hidden classifier confidence. Table 10 shows the hidden classifier confidence is capable of OOD detection.

D.6. Evaluation of NAN on CIDER

CIDER [29] is a training framework that is particularly effective for the KNN score. We evaluate NAN’s compatibility to
the KNN score from the model trained by CIDER. The results shown in Table 11 indicates that NAN can effectively enhance
the KNN score of CIDER.



SVHN Places365 iSUN Texture LSUN Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95S AUROC FPR9S AUROC FPR95S AUROC
NAN 73.82 90.46 26.33 94.65 25.47 96.46 25.35 95.21 1.17 99.45 30.43 95.25
KNN 4.44 99.36 37.88 92.97 22.94 96.16 17.27 97.15 9.85 98.21 18.48 96.77
NAN+KNN  5.70 98.62 21.79 95.32 14.01 97.64 16.21 96.61 0.95 99.68 11.73 97.57

Table 11: The results of the OOD detection scores (KNN, NAN, NAN+KNN) on the model trained by CIDER on CIFAR-10 (ID).

iNaturalist SUN Places Texture ImageNet-O Openlmage-O Species Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

l1-norm 9752  52.06 95.58  59.40 95.65  61.30 92.11 5921 8820  67.97 9243  63.10 95.83  59.42 93.90  60.35
1/lp-norm  15.66  96.58 3338  91.83 39.10  90.37 4436 8741 88.60  56.76 4129 8858 64.04  79.55 46.63  84.44
Residual 28.74  95.09 46.88  89.76 5891  85.77 11.28  96.45 63.50  84.24 3496  93.34 7443 7372 4553  88.34
NAN 1586  96.94 29.81  92.77 3721  91.46 4346  88.09 87.95 69.74 38.12 9244 64.56  80.09 45.28  87.36
with ReAct:

l1-norm 98.07  37.19 96.37  46.97 96.90 4547 8544  61.21 8495  74.80 93.54  54.48 98.81  41.25 9344  51.62
1/lp-norm  21.19  95.60 36.56  90.81 41.28  89.63 52.16 8223 90.35  53.37 49.25  85.85 6145  81.89 5032 82.77
Residual 28.59  95.06 39.40 9195 51.02  88.18 12.11 96.87 68.30  83.01 36.67  92.62 7227  75.03 4405  88.96
NAN 13.86  97.37 2490  94.69 3331 9252 3402 91.44 84.10 7172 3727 92.02 63.68  81.10 41.59  88.69

Table 12: The comparison of NAN with various forms of vector norms on ImageNet-1k (ID).

D.7. Comparison of NAN to various forms of vector norms

To further highlight the effectiveness of NAN, we compare NAN with various forms of vectors norms; namely, [1-norm,
the reciprocal of /p-norm, and the residual of ViM which is the /5-norm of the orthogonal projection. The experiment protocol
follows [51], and the OOD datasets can be downloaded from its GitHub repository.

The results in Table 12 indicate that NAN is significantly better than the /;-norm and the reciprocal of /j-norm. We note
that [, -norm does not capture deactivation, while the reciprocal of /y-norm captures only deactivation. Hence, the superiority
of NAN over these vector norms indicate that capturing both activation and deactivation is crucial.

Compared to the residual of ViM, on the other hand, NAN is notably superior with respect to the FPR95 metric when
ReAct is applied on the model, while NAN is comparable to the residual when without ReAct. We note, however, that the
residual of ViM requires eigen decomposition of the bankset features, while the computation of NAN is done by a single
forward pass of the network.

E. Limitation of NAN

Based on our theoretical observations, NAN is intrinsically a classifier output and hence may inherit the weaknesses of
classifier-based OOD detectors that have been recently found in [8, 9]. In addition, as observed in Sec. D.1, the optimal usage
of NAN requires networks that involve the MLP projection head.

thtps ://pytorch.org/vision/main/models/generated/torchvision.models.vit_lb_16.html


https://pytorch.org/vision/main/models/generated/torchvision.models.vit_b_16.html
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Figure 12: Results of hidden classifiers with different activation functions (ReLU, Leaky ReLU, and GeLU) on CIFAR-10.
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Figure 13: Results of hidden classifiers with different activation functions (ReLU, Leaky ReLU, and GeLU) on SVHN.
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Figure 14: Results of hidden classifiers with different activation functions (ReLU, Leaky ReLU, and GeLU) on MNIST.

Prediction Accuracy

Prediction Accuracy

Prediction Accuracy

Prediction Accuracy

|
Entropy of Prediction
Approximation Error

S
Eiw
=
Zos
Lo
o
R
Soas
2

oo

3
S
£
=8

Epoch

Epoch

(f) MNIST, Leaky ReL.U, w/o bias, pre-activation

()M

— Layer1

Epoch

— layer2

Soa
§on
Gow
5

Sos

— Layer3

Epoch
— Layer4

— Layer5

(b) MNIST, ReLU, w/o bias, pre-activation

118

2oz
g

2o

Sow

3 Zoos
Soxs 8

Gow o000

Epoch
— layerl — layer2 — Layer3

i

Approximation Error

Epoch
— Layers

—— Layers

(d) MNIST, ReLU, w/ bias, pre-activation

Sis

— layer1

Som

— layer1

s
S1is
goso
S

— layer1

Epoch
— Layer2

Sign Difference

Epoch
— Layer2

w0
Epoch

— Layer2

Sign Difference

Appro

— Layer3

— Layer3

Sign Difference
Approximatior

2

— Layer3

S

Eors
Epoch

— Layer4

—— Layers

gm

Eon
Sow
&
Soas
S
000

Epoch
— layera — Layer5

510

o w0 x
Epoch

— Layera

— Layers

(j) MNIST, GeLU, w/o bias, pre-activation

100

Entropy of Prediction

oz

H

— Layer1

Epoch

— layer2

Sign Difference

H

— Layer3

2
Gos
Ses
Eou
4
goz
g
oo
Epoch
— layerd — Layer5

(1) MNIST, GeLU, w/ bias, pre-activation

Epoch

Epoch

i

Epoch

i

NIST, Leaky ReLU, w/ bias, pre-activation

0

Epoch

100

Epoch

Epoch

10



