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1. Code
The code is available at https://github.com/Peterande/GET-Group-Event-Transformer, containing

the implementation of our GET network architecture.
Our code is structured in a modular and easy-to-follow manner, allowing for easy customization and extension. We

include comments and explanations to aid understanding and reproducibility. The code is implemented using PyTorch 2.0.1
on Ubuntu 20.04 operation system.

2. Additional Visualizations
We provide additional visualizations of the object detection results on the Gen1 dataset, as shown in Figure 1. As can be

seen, GET achieves better performance in detecting various objects in different scenarios, including objects that are distant,
obscured, or have low illuminance changes.
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Figure 1. Visualizations of the object detection results on the Gen1 dataset. Compared with the Swin-Transformer v2, our proposed
network (GET) detects most objects, while the bounding boxes are more accurate.
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3. Video Object Detection Results
We provide a video clip in video.mp4. The video corresponds to an event clip in the validation set of the 1Mpx dataset.

It includes the visualizations of ground truth and object detection results of GET and Swin-Transformer v2 [3]. In the video,
our object detection results are significantly superior.

4. Head Details
For classification, the connected head consists of a global average pooling layer that aggregates the features from the last

block of GET, followed by a fully connected layer that maps the features to the output classes.
For object detection, the connected head is the same as in RVT [2] (YOLOX [1] PAFPN and decoupled heads). The

PAFPN depth is chosen as 0.67. The confidence and NMS thresholds are set as 0.001 and 0.45, respectively.
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