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In this supplementary material, we first introduce the im-
plementation details of our method and our dataset (Sec. A).
Then we show more experimental results (Sec. B). Finally,
we summarize several limitations of our method (Sec. C).
More results can be found in the supplementary video.

A. Method Details

A.1. Details of our HandObject Dataset

Our HandObject dataset is collected with a sparse-view
camera system with 8 calibrated color cameras. We cap-
ture a collection of images, including hands of four persons,
four objects (including ’bean-can’, ’cup’, ’box’ and ’meat-
can’), and hand-object interactions. Fig. A shows hand and
object instances, and the camera viewpoints of camera sys-
tem. We detect hand and object using hand and object de-
tection method [13], and use PointRend [8] to obtain rough
foreground masks. We use MediaPipe [10] to obtain the
initial hand skeleton pose of the hand images and use Cosy-
Pose [9] to obtain the initial object pose in the offline stage.

A.2. Network Architecture

In Sec. 3.1 of our main paper, we introduce our offline
models, and we will show more details in this section.

Differences to A-NeRF [14]. Our hand network architec-
ture is shown in Fig. B, and our method has two key im-
provements compared to A-NeRF [14]. First, the embed-
ding vectors of our hand model is different from A-NeRF.
We add positional encoding λ(·) and cutoff on relative di-
rection r of each sampling point x on camera ray. We define
the cutoff point v̄ =[0.08, 0.03, 0.03, 0.02, 0.02, 0.03, 0.02,
0.02, 0.02, 0.03, 0.02, 0.02, 0.02, 0.03, 0.02, 0.02, 0.02,
0.03, 0.02, 0.02, 0.02] by clustering analysis of bone length
L. This modification allows the model to preserve better

*indicates corresponding author.

piece-wise rigidity of the fingers. Second, we add positional
encoding λ(·) on the normal nhand of each sampling point
x, i.e. the derivation of the SDF value of sampling point, to
replace the original appearance code used in A-NeRF. We
encode the normal nhand to get reliable color prediction in
our hand model because the normal of a surface point is a
key clue for geometric information [3]. See Fig. K for qual-
itative comparison with A-NeRF.

Network Details. Our network consists of shape network
and color network. The shape network is an 8-layer MLP
(width=256), taking as input embedding vectors es and out-
put sdf . The color network is a 4-layer MLP (width=256).
The color network of our hand model takes es combined
with γ(n) and the feature produced by shape network as
input and output color c. The color network of our object
model takes es combined with γ(n), the ray direction un-
der object coordinate system lo and the feature produced by
shape network as input and output color c. Our offline stage
model needs 300k iterations, and we add VGG loss at the
90,000th iteration in Eq.5 of our main paper.

A.3. Bone Transformation

In Sec. 3.1 of our main paper, we use bone transforma-
tion for coordinate transformation to canonical pose, and
we further introduce the details of the bone transformation
in this section.

The hand skeleton pose J = {Ji}21i=1 ∈ R21×3 can be
decoupled as pose parameters θ ∈ R36 and bone length
L ∈ R20. We can also use pose parameters θ and bone
length L to get a pose J by forward kinematics, and then
use J to calculate the bone transformation B−1 ∈ R21×4×4,
which can convert the current pose J to the canonical pose
T ∈ R21×3. Our bone transformation consists of a global
transformation matrix Bg ∈ R1×4×4 of the root joint to
obtain 3D root-aligned joints, and a local transformation
matrix Bl ∈ R21×4×4 of joints to convert the root-aligned
joints to the canonical pose. The bone transformation can
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Figure A: HandObject dataset. The first row shows four objects and four hands. The second row shows eight perspectives in
the hand-object interaction scenes.
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Figure B: The network architecture of our hand model.

be defined as B−1 = BlBg . In the following, we first in-
troduce the rotation angles contained in the hand pose, and
then introduce the key idea of the bone transformation cal-
culation in Sec. A.4.

We follow HALO [6] to define the structure of the right
hand used for bone transformation calculation (see Fig. C).
The hand structure contains 21 joints Ji ∈ R3, and 20 bones
bi ∈ R3. The palm is divided into four planes (each plane
passes three neighboring joints on the palm), and we define
the normal direction of each plane as ni ∈ R3. The hand
joints are divided into four levels (see Fig. C), and we can
get 37 controllable angles, including the angles between the
normal directions of two adjacent palm planes (3 in total),
the angles between adjacent level-0 bones (4 in total), and
level 1-3 bone has flexion angle and abduction angles in
their respective local coordinate systems (30 in total).

A.4. Global and Local Transformation

We follow HALO [6] to calculate the global transforma-
tion Bg and the local transformation Bl in Sec. A.3.

Global Transformation. The global transformation Bg in-
cludes the rotation Rpalm ∈ R3×3 and translation Tpalm ∈
R3 of the root joint J0. First, we translate J0 to the origin
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Figure C: Hand structure to get bone transformation. In or-
der to calculate bone transformation, we define four levels
of bones, illustrated with different colors, black arrow as
level-0 bone, red arrow as level-1 bone, yellow arrow as
level-2 bone, green arrow as level-3 bone.

O of the world coordinate, align b3 with −Y axis, and then
align the plane passing b2 and b3 with X−O−Y plane to
achieve global alignment. Finally, we get the global matrix
Bg by combining Rpalm and Tpalm.

Local Transformation. We follow HALO [6] to define a
set of local coordinate systems with four level bones, and
get the local transformation matrix Bl to map each 3D root-
aligned joint to canonical joint. Details can be found in
HALO [6]. Following a similar approach, we can also cal-
culate the corresponding pose parameter θ and bone length
L with respect to hand skeleton pose J.

During offline stage (Sec. 3.1 of our main paper), we
first get bone length L for each hand according to the hand
skeleton pose estimation. Then we fix the bone length L in
offline stage and online stage (Sec. 3.2 of our main paper).



A.5. Definition of Pose Parameters

Definition of Hand Pose Parameters. During hand pose
optimization, we refine the hand pose parameters θhand ∈
R36 including the rotation and translation of the palm root
joint J0, the angles between the normal directions of two
adjacent palm planes (3 in total), the angles between adja-
cent level-0 bones (4 in total), the flexion angle on level 2-3
bones (10 in total, because the hand joints on level 2-3 bones
have no degree of freedom in abduction angle.), and flexion
and abduction angles on level 1 bones (10 in total). We fol-
low [17] to convert the rotation matrix Rpalm ∈ R3×3 of
the palm root to a 6D representation, and the translation of
the root joint Tpalm has three dimensions. Therefore, a total
of 36 hand pose parameters θhand ∈ R36 will be optimized
in the offline and online stages.

Definition of Object Pose Parameters. During the opti-
mization of object pose, we optimize the rotation Ro ∈
R3×3, which is defined in 6D representation, and transla-
tion To ∈ R3 of the object. Then a total of 9 object pose
parameters θobject ∈ R9 will be optimized in the offline and
online stages.

A.6. Pose Optimization in Offline and Online Stages

During the offline stage, we have the estimated hand
skeleton pose J̄ and object 6D pose R̄o, T̄o. We decouple
J̄ into θhand and L̄ and use the forward kinematics func-
tion H(θhand,L) 7→ (J,B−1,T) to get bone transforma-
tion B−1 with hand pose parameter θhand and bone length
L (Sec. 3.1 of the main paper), and the bone length L of
each hand is fixed during optimization. In order to reduce
the inevitable pose errors in the offline stage, we obtain the
final hand pose J and object pose Ro,To by optimizing the
loss function in the offline stage (Eq. 5 in the main paper)
with respect to θhand, θobject using ∆θhand, ∆Ro, ∆To,
and the other network parameters of hand and object mod-
els.

In order to conduct joint model fitting at online stage,
we adopt images of sparse camera views at each frame for
fitting. We first use LT [5] to get initial hand pose Ĵ, use
Cosypose [9] to get initial object 6D pose R̂o, T̂o, and then
fix the offline hand and object models and get the final hand
pose J and object pose Ro,To by optimizing the online
stage loss (Eq. 7 or Eq. 8 in the main paper) with respect
to θhand and θobject, respectively. Since our offline object
model can get object mesh model Vo in the object coordi-
nate system, we fix the mesh model of each object before
fitting. Then the object vertices under object pose Ro,To

can be calculated by V = RoVo + To, and they can be
used to calculate the stable contact loss in Sec. 3.2.3 of our
main paper.

A.7. Details of Model Fitting for Video

In Sec. 3.2.3 of our main paper, we present loss function
of joint model fitting for video sequence. However, fitting
on a video sequence is often stuck in local minima due to
its non-convex property with high dimension [4], which can
lead to noisy updates of θhand and θobject [14]. We adopt a
divided-and-conquer optimization strategy based on sliding
window. In each iteration, we select a sliding window with
four adjacent frames, and optimize the pose of each frame
in the sliding window. The frames in the window are fit-
ted, and continued to be optimized for four times. Then the
optimization switches to the next time window. After the
optimization of the time window at the end of the video is
conducted, we return to the first time window to start a new
optimization iteration using sliding window. In the experi-
ment, the optimization will iterate over the entire sequence
for 5 times.

B. Additional Experimental Results
B.1. Comparison Results

Comparison on Rendering Quality with SoTA Methods.
Fig. D shows more qualitative comparison with the SoTA
methods, A-NeRF [14], IBRNet [15] and InfoNeRF [7] on
HandObject dataset under 5 test views. We find that few-
shot neural rendering methods such as IBRNet [15] and In-
foNeRF [7] cannot work well when the camera views are
widely separated. Our two-stage method can achieve better
results because the pre-built hand and object models pre-
serve the shape and appearance priors. We replace our hand
model with A-NeRF based hand model and use the same
object model for fitting and rendering. Compared to the
density representation in A-NeRF, the SDF representation
in our model can get high-quality appearance, and the ren-
dering quality of our method is better (See Table 4 of our
main paper).

Effect of Model Fitting on Pose Estimation. In order
to investigate whether model fitting is effective to improve
pose estimation during online stage, we compare pose per-
formance with initial hand pose by LT [5], GHPT [1],
I2L [11] and initial object pose by Cosypose [9] as shown
in Table 1 of our main paper. We observe that better hand
skeleton pose and object pose can be achieved with our on-
line model fitting (i.e. ’GHPT+CP+Ours’, ’LT+CP+Ours’).
Fig. I shows qualitative comparison on pose estimation and
the refined pose with model fitting under 8 camera views in
HandObject dataset compared with LT and CosyPose. Af-
ter fitting the projected hand skeleton pose is well aligned
with the hand, and the projected object mesh model are also
well aligned with the object boundary.

Comparison with A-NeRF [14]. A-NeRF [14] is a gener-
ative neural body model, and we apply it to build the neu-
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Figure D: Rendering quality comparison on the HandObject dataset under three camera views with SoTA methods. Our
pre-built models preserve the shape and appearance priors and achieves better rendering results from sparse views. We zoom
in the rendering results for demonstration.

Method PSNR ↑ SSIM ↑ LPIPS ↓
A-NeRF [14] 18.61 76.51 0.240

Ours 19.85 79.66 0.158

Table A: Quantitative comparison with A-NeRF on the ren-
dering quality of hand models in HandObject dataset. Our
hand model outperforms A-NeRF based hand model.

ral hand model, but it cannot be directly used to represent
the hand-object interaction scene. We combine the A-NeRF
based hand model with our object model to represent hand-
object interaction scene.

We first show quantitative comparison with A-NeRF on
the rendering quality of hand models in HandObject dataset
in Table A, and our hand model outperforms A-NeRF based
hand model on rendering quality evaluation metrics. Then
we replace our hand model with A-NeRF based hand model
in hand-object interaction scene. Table 4 of our main paper
shows that our model can achieve better rendering quality
than A-NeRF based hand model in hand-object interaction.
Fig. K shows more qualitative comparisons on hand and
hand-object interaction with A-NeRF based hand model.
We observe that our results preserve more appearance de-
tails on the hand.

In order to investigate the effect of rendering quality on
pose optimization, we compare pose accuracy after joint
model fitting with our method and A-NeRF based pre-built
hand model in HandObject dataset under 8 camera views.
As shown in Table 1 of our main paper, high-quality render-
ing results of the hand model with our method are conducive
to obtaining more accurate poses with the rendering-based
optimization than A-NeRF based method (i.e. ’LT+CP+A-
NeRF’).

Fig. E shows the qualitative comparison on hand recon-
struction with our method and A-NeRF. Our method can
achieve better hand surface reconstruction results, and the
red circle highlights that our method has less shape artifacts.
Comparison with the Parametric Model on Pose Opti-
mization. We conduct comparison experiments using para-
metric models for pose optimization. We first use I2L [11]
to estimate the pose and shape parameters for hand para-
metric model MANO [12] and use MANO hand mesh and
the object mesh obtained in the offline stage for pose op-
timization. We use images in HandObject dataset under
8 camera views for fitting. We do not use the color loss
for pose optimization with MANO due to the lack of tex-
ture in MANO. Table 1 of our main paper shows that the
parametric model fitting cannot achieve accurate pose (i.e.
’I2L+CP+Mesh Fitting’). Conceptually, the mask loss is
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Figure E: Hand surface comparison with A-NeRF [14]. Our
method can achieve much better hand surface reconstruc-
tion results, and the red circle highlights that our method
has less shape artifacts.

the main loss for pose optimization with MANO, and it is
inferior to the color loss to provide sufficient constraints to
achieve accurate pose results.

Pose Estimation Baseline. In hand pose estimation, we
compare with the state-of-the-art (SoTA) multi-view pose
estimation method including GHPT [1] and LT [5] and
a single view pose estimation method I2L [11]. We use
MMPose [2] to obtain the 2D initial hand pose for GHPT.
I2L is used to predict the parameters of the hand model
MANO [12] in a single view, and we extend it to multi-
view task. We transform the MANO parameters obtained
by multi-view images from camera coordinate to world co-
ordinate and average the MANO parameters to obtain the
final parameters in the world coordinate system, and then
obtain the translation of the wrist in the world coordinate
system based on the triangulation of the predicted 2D key
points of the wrist. In object pose estimation, we compare
with the SoTA multi-view method CosyPose [9] and initial-
ize the pose from the output of PoseCNN [16] for CosyPose.
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Figure F: Effect of smooth and stable contact loss. (a) The
jitters are significantly reduced by adding smooth loss. The
jitter at the object is significantly reduced when smooth loss
is added. (b) The contact regions are more stable with stable
contact loss. After adding stable contact loss, the contact
regions are enforced to be more stable, and sliding effects
are effectively reduced.

Dataset Details in Pose Estimation Comparison. In Han-
dObject dataset, we choose 50 interaction sequences as the
test set. We select 4 single-hand data and 12 interaction se-
quences as training dataset for hand pose estimation. We
select 4 single-object data and 25 interaction sequences as
training dataset for object pose estimation. In Synthetic
DexYCB dataset, we choose 20 interaction sequences as the
test set. We select 4 single-hand data and 36 interaction se-
quences as training dataset for hand pose estimation. We
select 5 single-object data and 36 interaction sequences as
training dataset for object pose estimation.
Novel View Synthesis Baseline. We select frames from the
test set in HandObject dataset, of which 3 views are used
for fitting or training few-shot methods, and the remaining
5 views are used for testing. For training IBRNet [15], We
use the official parameter model and refine it for each input
frame. For training InfoNeRF [7], We train a model from
scratch for each input frame.
A-NeRF [14] Baseline. We select single-hand images to
train the A-NeRF based hand models for four subjects,
which are the same as used in our offline hand models.

B.2. Ablation Study

Effect of Smooth Loss and Stable Contact Loss. We
show qualitative results on smooth loss and stable contact
loss in HandObject dataset under 8 camera views in Fig. F.
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Figure G: Quantitative comparison of interaction loss on
rendering quality. The accurate pose after fitting improves
the rendering quality, and Linteract further improves the
rendering quality by solving unreasonable interactions such
as penetration.

We observe that the jitter at the object is significantly re-
duced when smooth loss is added (Fig. F(a)). As shown in
Fig. F(b), the hand object contact is more consistent with
stable contact loss. Due to heavy inter-occlusions between
hand and object, it is easy to get results with fingers slid-
ing on connecting surfaces. Since the stable contact loss
integrates the contact area information between frames, es-
pecially at the edges of object, after adding stable contact
loss, the contact regions are enforced to be more stable, and
sliding effects are effectively mitigated. More results can be
found in the video.

Effect of Pose Optimization on Hand Model in Offline
Stage. In order to investigate the effect of pose optimization
on hand model in offline stage, we compare hand rendering
results without pose optimization. Fig. L shows the qualita-
tive results of pose optimization. We observe that through
pose optimization, the rendering results of the hand model
are more realistic. More results can be found in the video.

Effect of Interaction Loss on Rendering Quality. We
show the qualitative comparison results on rendering qual-
ity under different loss combinations in Table 7 of our main
paper. We show the results of the quantitative compari-
son in Fig. G. The red circle shows that after fitting (i.e.
’Lrender+Lpose’, ’Lrender+Lpose+Linteract’), the pose
results of hands and objects become more accurate (refer-
ring to Table 2 and Table 3 of our main paper), and the

corresponding rendering quality evaluation metrics are im-
proved (referring to Table 7 of our main paper). The in-
teraction loss Linteract can further improve the rendering
quality, because the incorrect color caused by unreasonable
interactions such as penetration can be reduced.

B.3. Scene Editing Results

Editing Hand Pose. We can get new rendering results using
our hand model by changing the hand skeleton pose. Our
hand model can be driven by various poses and the results
are shown in Fig. M. We use the same pose sequence to edit
on three different hand models. More results can be found
in the video.
Replacing Models. We can replace the hand or object
model and get the corresponding results (Fig. N). In the
third column of Fig. N, we replace the hand model and get
realistic rendering results. We can also change the object
model and the pose of hand to edit the interaction scene.

B.4. Novel View Synthesis and Reconstruction

Fig. J shows more novel view synthesis and reconstruc-
tion results at the offline stage and the online stage. The
rendering results with our hand and object models preserve
realistic details and enable full 360 degree free-viewpoint
rendering and we can get high-quality hand-object interac-
tion reconstruction results.

C. Limitation and Failure Case
Although promising results can be achieved with our

proposed method, there are several key challenges to be
solved in the future study. First, our model does not take
into account the influence of shadow on the hand, so that
the rendering results in random perspectives may contain
unrealistic shadows. We show the failure cases in Fig. H.
Second, in the process of hand pose optimization, the self-
penetration problem of the hand is not considered, which
gets the self-penetration between fingers occasionally. Fi-
nally, the rendering efficiency of the model should be im-
proved in the future.

Figure H: Failure case of our method. Our model does not
take into account the influence of shadow on the hand, so
that the rendering results in random perspectives may con-
tain unrealistic shadows.
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Figure I: Effect of model fitting on pose estimation. After fitting, the projected hand skeleton pose is aligned well with the
hand, and the projected object mesh model are also well aligned with the object boundary.
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Figure J: The results on novel view synthesis and reconstruction. The rendering results of our hand and object models preserve
realistic texture information and enable full 360 degree free-viewpoint rendering, and we can get high-quality hand-object
interaction reconstruction results.



A-NeRF OursGround Truth A-NeRF

(Zoom in)
Ours 

(Zoom in)

Ground Truth

Figure K: Qualitative comparisons with the A-NeRF [14] based hand model. Our results preserve more texture details on the
hand.
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Figure L: Effect of pose optimization on hand model in offline stage. After pose optimization, the hand model learns more
realistic texture details, and the rendering results are especially better around finger joints.
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Figure M: Our pose editing results. We can get new rendering results using our hand model by changing the hand skeleton
pose and we show two pose-driven hand models under various poses.
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Figure N: Rendering results by replacing the hand and object models. In the third column, we replace the hand model and get
realistic rendering results. In the last two columns, we change the object model and the pose of hand to edit the entire scene.
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