
Appendix: Multiscale Structure Guided Diffusion for Image Deblurring

Mengwei Ren†‡∗ Mauricio Delbracio‡ Hossein Talebi‡ Guido Gerig† Peyman Milanfar‡
†New York University ‡Google Research

1. Additional Results
1.1. Effectiveness of the guidance on GoPro, HIDE and REDS

We include additional perception-distortion plots for GoPro [14], HIDE [17] and REDS [13] datasets in Fig. 1, as supple-
mentary for Section 4.3 of the main paper, to verify the effectiveness of the proposed guidance.
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Figure 1. Additional perception-distortion plots as supplementary for Sec. 4.3 in the main paper. All models are trained only on Go-
Pro [14]. The guidance mechanism allows for consistent better perceptual qualities and lower distortions compared to image-conditioned
diffusion probablistic model (icDPM) under different network capacities (’icDPM-S w/ Guide-S’ > ‘icDPM-S’; ‘icDPM-L w/ Guide-S/L’
> ‘icDPM-L’), both in-domain (GoPro) and out-of-domain (HIDE, REDS) ‘-S’ and ‘-L’ refer to small and large networks respectively.
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1.2. Additional visual results

To supplement main paper Fig.6,7,8, we provide additional and enlarged qualitative results for all datasets below.
Realblur-J (out-of-domain) deblurring examples are shown in Fig. 16, 17, 18, 19.
REDS (out-of-domain) deblurring examples are shown in Fig. 4, 5, 6, 7.
HIDE (out-of-domain) deblurring examples are shown in Fig. 8, 9, 10, 11.
GoPro (in-domain) deblurring examples are shown in Fig. 12, 13, 14, 15.

1.3. Failure cases

As discussed in the main paper, we acknowledge that the domain generalization of the model is still extensively bounded
by the quality of the training set. In our experiments, we only train with GoPro [14] for the sake of benchmarking. However,
the data diversity and representativity from GoPro is limited, i.e., it only contains daytime scenes, acquired outdoor under
sufficient lighting conditions. Moreover, the synthesis of blur in GoPro by simple averaging of consecutive frames is less
realistic [26]. Lastly, the ground truth images in GoPro dataset are rather low-quality, which may further hurt the out-of-
domain performance. Therefore, it is expected that it will be extremely hard for the model to perform decent deblurring on
scenes significantly different from GoPro, such as low-light images with saturated regions, in Realblur-J [15].

We include a few failure cases on such scenes in Fig. 20, 21, 22 23, where all methods fail to remove blur from the night
scenes, especially with night streaks. We believe that in practice, more realistic training datasets [5] will further increase the
model generalization.

2. Additional Ablation
Input concatenation During prototyping, we also explored the possibility of removing input-level concatenation, and

only rely on the intermediate representations from regression as the condition of the diffusion model, similar as in [7] for
super-resolution. Potentially, we expect such setting will further make the model domain-generalizable as it does not directly
interact with images from different domains, although it may also risk losing detailed information from the input.

As proof of concept, we use the same multiscale regression networks, and compare the models with or without input
concatenation. Further, since the diffusion model now only takes the intermediate representations as input, we reintroduce
the RGB information by using our model variants (d) in Table 8. in the main paper (i.e., regression targets are downsampled
RGB images instead of grayscale images). From Table 1, we observe that the input concatenation obtained a much better
performance both in-domain and out-of-domain than without concatenation. Therefore, in our final model, we keep the input
concatenation and only rely on the guidance features to provide additional information.

Table 1. Effects of input-level concatenation. From our model variant (d) in Table 8. of the main paper, we remove the input concatena-
tion, loosely inspired by [7] (super-resolution). In the context of deblurring, we observe deteriorate results indicated in row ‘w/o input
concatenation’, compared to the setting with additional input concatenation.

In-domain Out-of-domain

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓
w/o input concatenation 25.20 0.230 28.29 0.177
w/ concatenation 30.65 0.090 28.45 0.141



Further cross-domain alignment. We also explored the potential effects of finetuning the DPMs with adversarial for-
mulation where we used additional discriminators on the guidance features between different datasets (e.g., GoPro and
Realblur-J) so that the features extracted from different domains become indistinguishable, similar to the feature alignment
strategy in [20]. However, we do not observe extra benefits, and find that such finetuning may even hurt the performance as
shown in Fig. 2. We speculate that it could be a result of training instability of GANs, or perhaps the suboptimal formulation
under the image-conditioned DPM framework. We will leave this for future investigation.
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Figure 2. A comparison between our models with or without further domain adaptation with Realblur-J, on a GoPro trained model.
Surprisingly, further adversarial domain adaptation on the guidance features between GoPro and Realblur-J hurt the performance.



3. Additional implementation details
3.1. Architectures

The architectural details for the diffusion network and the guidance network are illustrated in Fig. 3.
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Figure 3. The detailed architecture of the proposed method. Left: the image-conditioned diffusion network based on a fully-convolutional
UNet similar to [22], where we replace the residual blocks from the UNet encoder with the proposed guided residual block. Middle
column illustrates the difference between a standard residual block and the proposed guided block, where we additionally incorporate
multiscale structure guidance. Right: The proposed guidance network for extracting the coarse structure features from the input at multiple
resolutions. At each scale, the blurry image is first converted to grayscale, downsampled, and lastly fed into the network to predict its clean
counterpart. The output from the last residual block is leveraged as the guidance feature.



3.2. Inference

As we use continuous noise level sampling during training, it enables the use of different noise schedulers during the
inference to potentially obtain samples with different distortion-perception trade-off. We therefore perform a grid search over
a set of different diffusion steps T , as well as the upper bound of the noise variance 1− αT . For efficiency, we also exclude
certain combinations that do not produce reasonable sampling (i.e., sampling results are pure noise or blank image), and the
final combinations are indicated in Table 2.

Table 2. The sampling parameters for inference.
Maximum noise variance 1− αT

0.01 0.02 0.05 0.1 0.2 0.5
St

ep
s

(T
)

20 ✓
30 ✓
50 ✓ ✓

100 ✓ ✓ ✓
200 ✓ ✓ ✓ ✓
500 ✓ ✓ ✓ ✓

1000 ✓ ✓ ✓ ✓

3.3. Computational cost

In Table 3, we report floating point operations per second (FLOPs) under different model configurations, calculated based
on an input image of 720×1280×3. For diffusion networks (c)-(d), the FLOPS are calculated based on a single diffusion step.
While optimizing sampling speed is out-of-scope of this work, we believe recent advance in speeding up DPM sampling [18,
3, 23, 9, 10, 11, 4, 12, 8] could be further incorporated into our framework.

Table 3. FLOPs under different model configurations, calculated based on a full-size input image of 720×1280×3. For diffusion networks
(c)-(d), the FLOPs are calculated based on a single diffusion step.

Guidance network Diffusion network # Params FLOPs

(a) icDPM-S - ch=32 6M 1200B
(b) icDPM-L - ch=64 27M 4800B

(c) icDPM-S w/ Guide-S ch=32 ch=32 10M 2500B
(d) icDPM-L w/ Guide-S ch=32 ch=64 30M 6100B
(e) icDPM-L w/ Guide-L ch=64 ch=64 52M 10000B

3.4. Benchmark results

We performed a consistent computation over all benchmarks for fair comparisons. To acquire the benchmark results, we
use the author provided results whenever possible. On the cross-domain set up of Realblur-J with GoPro trained only models,
we use author provided results of DvSR [22], UFormer [21], Restormer [24]. For DeblurGAN-v2 [6] and MPRNet [25], we
use official code repository along with the provided GoPro checkpoints for inference. On REDS [13], all results are obtained
by running their official models with the GoPro checkpoints.
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Figure 4. REDS [13] deblurring examples from MPRNet [25], HINet [1], DeblurGAN-v2 [6], Restormer [24], UFormer [21], icDPM
without guidance and Ours (icDPM with guidance).
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Figure 5. REDS [13] deblurring examples from MPRNet [25], HINet [1], DeblurGAN-v2 [6], Restormer [24], UFormer [21], icDPM
without guidance and Ours (icDPM with guidance).
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Figure 6. REDS [13] deblurring examples from MPRNet [25], HINet [1], DeblurGAN-v2 [6], Restormer [24], UFormer [21], icDPM
without guidance and Ours (icDPM with guidance).
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Figure 7. REDS [13] deblurring examples from MPRNet [25], HINet [1], DeblurGAN-v2 [6], Restormer [24], UFormer [21], icDPM
without guidance and Ours (icDPM with guidance).



Figure 8. HIDE [17] deblurring examples from MPRNet [25], MIMO UNet+ [2], SAPHNet [19], Restormer [24], UFormer [21],
DvSR [22] and Ours.
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Figure 9. HIDE [17] deblurring examples from MPRNet [25], MIMO UNet+ [2], SAPHNet [19], Restormer [24], UFormer [21],
DvSR [22] and Ours.
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Figure 10. HIDE [17] deblurring examples from MPRNet [25], MIMO UNet+ [2], SAPHNet [19], Restormer [24], UFormer [21],
DvSR [22] and Ours.



Figure 11. HIDE [17] deblurring examples from MPRNet [25], MIMO UNet+ [2], SAPHNet [19], Restormer [24], UFormer [21],
DvSR [22] and Ours.



Figure 12. GoPro [14] deblurring examples from MPRNet [25], MIMO UNet+ [2], SAPHNet [19], Restormer [24], UFormer [21],
DvSR [22] and Ours.
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Figure 13. GoPro [14] deblurring examples from MPRNet [25], MIMO UNet+ [2], SAPHNet [19], Restormer [24], UFormer [21],
DvSR [22] and Ours.



Figure 14. GoPro [14] deblurring examples from MPRNet [25], MIMO UNet+ [2], SAPHNet [19], Restormer [24], UFormer [21],
DvSR [22] and Ours.



Figure 15. GoPro [14] deblurring examples from MPRNet [25], MIMO UNet+ [2], SAPHNet [19], Restormer [24], UFormer [21],
DvSR [22] and Ours.
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Figure 16. Realblur-J [15] deblurring examples from UNet [16], MPRNet [25], DeblurGAN-v2 [6], Restormer [24], UFormer [21],
DvSR [22] and Ours.
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Figure 17. Realblur-J [15] deblurring examples from UNet [16], MPRNet [25], DeblurGAN-v2 [6], Restormer [24], UFormer [21],
DvSR [22] and Ours.
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Figure 18. Realblur-J [15] deblurring examples from UNet [16], MPRNet [25], DeblurGAN-v2 [6], Restormer [24], UFormer [21],
DvSR [22] and Ours.



Figure 19. Realblur-J [15] deblurring examples from UNet [16], MPRNet [25], DeblurGAN-v2 [6], Restormer [24], UFormer [21],
DvSR [22] and Ours.
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Figure 20. Failure case from Realblur-J [15] in low-light scenes.
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Figure 21. Failure case from Realblur-J [15] with strong light streaks.
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Figure 22. Failure case from Realblur-J [15] in night scenes.



Figure 23. Failure case from Realblur-J [15] in low-light condition.
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