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1. Network architectures
LightDepth U-Net We use a U-Net architecture with

skip connections and two decoders. Our encoder is a
ResNet18 [5] initialized with the weights from pre-training
in ImageNet [3]. Regarding the decoders, our albedo de-
coder uses a sigmoid activation function and our depth de-
coder an ELU+1 activation function after the last convolu-
tion.

LightDepth DPT We extend LightDepth DPT [6]
adding a branch for the prediction of albedo decoder. For
the depth estimation, we initialize the encoder and depth
decoder with DPT Hybrid weights. For albedo estimation,
we train the albedo decoder from scratch. In our pipeline,
we use the half of resolution than the original images for
training, upsampling the outputs with bilinear interpolation.

Figure 1 presents the head for the albedo decoder that
includes a sigmoid activation function.

2. Datasets
Table 2 shows which sections of the C3VD [2] were used

for training / testing. We split into sections to ensure a fair
comparison along the dataset. Regarding real endoscopy
images, we use with the sequences 051, 009 and 058 of the
EndoMapper dataset [1].
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Figure 1. Albedo estimation head

Model Texture Video Frames Stage
Cecum 1 b 765 Train
Cecum 2 b 1120 Train
Cecum 2 c 595 Train
Cecum 4 a 465 Train
Cecum 4 b 425 Train

Sigmoid Colon 1 a 800 Train
Sigmoid Colon 2 a 513 Train
Sigmoid Colon 3 b 536 Train

Transcending Colon 1 a 61 Train
Transcending Colon 1 b 700 Train
Transcending Colon 2 b 102 Train
Transcending Colon 2 c 235 Train
Transcending Colon 3 b 214 Train
Transcending Colon 4 b 595 Train

Descending Colon Down 4 a 74 Train
Cecum 1 a 276 Test
Cecum 2 a 370 Test
Cecum 3 a 730 Test

Sigmoid Colon 3 a 610 Test
Transcending Colon 2 a 194 Test
Transcending Colon 3 a 250 Test
Transcending Colon 4 a 384 Test

Descending Colon Up 4 a 74 Test

Table 1. Dataset Split for C3VD

3. Normals from Depth

Figure 2 shows examples of Open3d [7], in-house, U-Net
and TFtN [4] used in the analysis.
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Figure 2. Quantitative results of different approaches to obtaining
surface normals from a depth map.



4. Additional results
We present additional quantitative and qualitative re-

sults. Figure 3 shows additional qualitative results of Light-
DepthDPT TTR in real colonoscopy and gastroscopy pro-
cedures. Figure 4 shows quantitative results of LightDepth
U-Net in the transverse and cecum sections of the C3VD.

Finally, in Figure 5 we show examples of LightDepth U-
Net in our in-house synthetic dataset. The predicted depth
and normals capture the shape of the colon sections, as
shown in the 3D reconstruction. The albedo map appears
brighter as we fix Value Channel to V = 100. Our method
recovers the different albedo of mucosa and blood vessels.
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Figure 3. Additional qualitative examples of LightDepthDPT in real colonoscopy and gastroscopy procedures.
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Figure 4. Additional quantitative examples of LightDepth U-Net in C3VD.
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Figure 5. Qualitative examples of LightDepth U-Net in Synthetic dataset.


