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Overview
In this Supplementary Material, we prove all the mathe-

matical results from the main body of the paper. For con-
venience of the reader, we start in Appendix A by explain-
ing the elementary notions of algebraic geometry, that are
helpful to understand the rest of the Supplementary Mate-
rial. Results that appear in the main body of the paper are
restated and given the same numbering. Additional results
not stated in the main body are numbered independently.

Appendix B deals with Section 1 apart from the Eu-
clidean distance degree. In Appendix C we provide helpful
background for the EDD calculations that are carried out in
Appendix D. In Appendix E we provide pseudocode for the
different reconstruction approaches from Section 2.

A. Algebraic Geometry Preliminaries
The complex projective space of dimension n is the set

of one-dimensional linear subspaces of Cn+1, equivalently
Pn := (Cn+1 \ {0})/ ∼, where ∼ denotes the equivalence
relation defined by

x ∼ y ⇔ x = λy for some 0 ̸= λ ∈ C. (1)

The ring of polynomials in n + 1 variables is denoted
by R := C [x0, . . . , xn]. A subset X ⊆ Pn is called
a projective algebraic variety, when there exists a collec-
tion {f1, . . . , fk} of homogeneous polynomials such that
X = {x ∈ Pn | f1(x) = · · · fk(x) = 0}. In other words,
X is the vanishing set of the polynomials fi for i = 1, . . . , k
such that each term of the polynomial has degree d and

fi(λx0, . . . , λxn) = λdfi(x0, . . . , xn). Similarly, a subset
X ⊆ Pn1×· · ·×Pnm is an algebraic variety, ifX is the van-
ishing set of multi-homogeneous polynomials {f1, . . . , fk}.

The Zariski topology on Pn (or Pn1 × · · · × Pnm ) is the
topology whose closed sets are algebraic varieties. There-
fore, given a set U , its Zariski closure, denoted U , is the
smallest variety containing U .

LetX ⊆ Pn and Y ⊆ Pm be projective varieties. A map
φ : X −→ Y is regular if it can be written as

φ(x) = [φ0(x) : · · · : φm(x)] (2)

for some polynomials φ0, . . . , φm that do not vanish simul-
taneously. If there is a regular map ψ : Y −→ X such that
φ ◦ ψ = IdY and ψ ◦ φ = IdX , we say that X and Y are
isomorphic, and we denote it by X ∼= Y . If U ⊆ X is a
Zariski dense open set and φ : U −→ Y is a regular map,
we say that φ is a rational map from X to Y , and denote
it by φ : X 99K Y . See [1, Section 1] for background on
the basic properties of rational maps that are used in this
section.

Given a variety X , we define its ideal as the set

I(X) = {f ∈ R | f(x) = 0 for every x ∈ X} (3)

of homogeneous polynomials that vanish in every element
of X . For every ideal I , it is possible to find a (not neces-
sarily unique) finite set of polynomials {f1, . . . , fk} ⊆ I ,
such that every element f ∈ I can be written as

f(x) = g1(x)f1(x) + · · ·+ gk(x)fk(x), (4)



for some polynomials gi(x) ∈ R. In this scenario, we say
that I is generated by {f1, . . . , fk}, and this is denoted as
I = ⟨f1, . . . , fk⟩.

Given a varietyX and its ideal I(X) = ⟨f1, . . . , fk⟩, we
say that a point a ∈ X is smooth if the rank of the Jaco-
bian matrix J(a) :=

[
∂fi
∂xi

(a)
]

is equal to the codimension
of X . This definition is independent of the choice of gener-
ators of I(X). For a broader description and results on the
smoothness of algebraic varieties, we refer the reader to [5].

We use the notation ∨ to denote the join of two vectors
spaces, meaning U ∨ V = span{U, V }. Similarly, ∧ de-
notes the intersection of linear spaces.

B. Anchored Multiview Varieties
For a camera matrix C : P3 → P2, the back-projected

line of x ∈ P2 is the line in P3 that contains all points that
are by C projected onto x. Similarly, for an image line
ℓ ∈ Gr(1,P2), its back-projected plane is the plane in P3

containing all lines that are by C projected onto ℓ. Under
the identification Gr(1,P2) ∼= (P2)∨ ∼= P2 we describe
the back-projected plane of ℓ by its defining linear equation
CT ℓ. We may parameterize lines in Gr(1,P3) by two points
spanning it.

Throughout this work, we assume that any camera ar-
rangement has at least one camera and all centers are pair-
wise disjoint.

B.1. The linear isomorphisms

Consider an arrangement C̃ of full-rank 2 × 2 matrices,
and an arrangement Ĉ of full-rank 2×3 matrices. We define
M1,1

C̃
, andM2,1

Ĉ
, respectively as the Zariski closure of the

image of the joint maps

ΦC̃ : P1 −→ (P1)m,

X 7−→ (C̃1X, . . . , C̃mX)
(5)

and

ΦĈ : P2 99K (P1)m,

X 7−→ (Ĉ1X, . . . ĈmX).
(6)

Theorem 1.3.

1. Let ϕL : L → P1 and ψC,i : Ci · L → P1 be any
choices of linear isomorphisms. Let C̃ denote the ar-
rangement of matrices C̃i := ψC,i ◦ Ci ◦ ϕ−1

L . Then

ψC,L := (ψC,1, . . . , ψC,m) :ML
C →M

1,1

C̃
(7)

is a linear isomorphism.

2. Let ϕX : Λ(X) → P2 and ψC,i : Λ(CiX) → P1 be
any choices of linear isomorphisms. Let Ĉ denote the

arrangement of matrices Ĉi := ψC,i ◦ Ci ◦ ϕ−1
X . Then

ψC,X := (ψC,1, . . . , ψC,m) : LX
C →M

2,1

Ĉ
(8)

is a linear isomorphism.

We interpretCi◦ϕ−1
X : P2 99K P2 as a matrix as follows.

Let H be a plane in P3 disjoint from X . Then the following
map ϕ−1

X : P2 → Λ(X) is defined by a linear mapping
fX : P2 → H such that ϕ−1

X (Y ) = span{X, fX(Y )}. As a
matrix, Ci ◦ ϕ−1

X is equal to [CiX]×CifX , where

[a]× :=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (9)

We often work with Zariski closures of images of ra-
tional maps. By Chevalley’s theorem [14, Theorem 4.19],
we may equivalently take Euclidean closures. With this in
mind, we can use the following lemma.

Lemma B.1. Let ψ : X → Y be an isomorphism and
U ⊆ X , V ⊆ Y sets whose Euclidean closures equals their
Zariski closures. If ψ(U) = V , then ψ(U) = V .

Proof. Take a point v ∈ V \ V . Then there is a se-
quence V ∋ v(n) → v in Euclidean topology such that
u(n) = ψ−1(v(n)) ∈ U converges in Euclidean topology by
continuity of ψ to a point u ∈ U for which ψ(u) = v. We
have shown V ⊆ ψ(U). Similarly we show U ⊆ ψ−1(V )
from which it follows that ψ(U) ⊆ V .

Proof of Theorem 1.3.
1. It is worth noting that ΦC |L is well-defined every-

where, as L does not contain any center. Additionally, ΦC̃ is
defined everywhere. In particular, the images of both maps
are Zariski closed.

By construction, ψC,L(ΦC |L(X)) = ΦC̃(ϕL(X)), which
shows that ψC,L is a well-defined map.

Take a point x ∈ M1,1

C̃
, then there is a point X ∈ P1

such that xi = C̃iX for each i. Consider x′ ∈ ML
C , the

image of X ′ = ϕ−1
L (X) such that x′i = CiX

′. By con-
struction, x is the image of x′ under ψC,L, which shows
surjectivity.

For injectivity, assume that ψC,L(X) = ψC,L(X
′). Then

for each i, CiX = CiX
′. However, since the line L does

not meet any of the centers, the back-projected lines must
meet in exactly one point inside L, meaning that X = X ′.

2. As we wish to use Lemma B.1, we let

X = Λ(C1X)× · · · × Λ(CmX), Y = (P1)m. (10)

Note that ψC,X : X → Y is an isomorphism by con-
struction. Further, let U be the image of ΥC |Λ(X), and
V = Im ΦĈ . One can show ψC,X(U) = V via similar
calculations to 1.



B.2. Irreducibility, dimension, and equations

In the main body of the paper it was claimed that the an-
chored multiview varieties under natural conditions equal,

XL
C = {(x1, . . . , xm) ∈MC : xi ∈ Ci · L}, (11)

YX
C = {(ℓ1, . . . , ℓm) ∈ LC : CiX ∈ ℓi}. (12)

This provides an alternative characterization to the clo-
sure of the images of restrictions of ΦC and ΥC , which is a
useful fact that we formalize in the following lemma.

Proposition 1.2. Consider an arrangement of m cameras
C = (C1, . . . , Cm), a point X ∈ P3 and a line L in P3

satisfying the conditions of Definition 1.1.

1. If there are two different camera centers ci and cj such
that the span of {ci, cj , L} is P3, then

ML
C = {(x1, . . . , xm) ∈MC : xi ∈ Ci · L}. (13)

2. If for each camera center ci, the line spanned by ci and
X does not contain any other camera center, then

LX
C = {(ℓ1, . . . , ℓm) ∈ LC : CiX ∈ ℓi}. (14)

Proof.
1. We recall the assumption that L contains no center.

Then ΦC |L is defined everywhere and the image of this map
is closed. Let x ∈ ImΦC |L. There is an X ∈ L such
that x = ΦC(X). Therefore x ∈ MC and xi ∈ Ci · L.
Conversely, if x ∈ MC and xi ∈ Ci · L, then since the
back-projected line of xi meet L in unique points Xi ∈ L,
we just have to argue that Xi are all the same. This is trivial
if there is only one camera. If there are two centers ci, cj
that together with L span P3, then the planes ci ∨ L and
cj ∨ L meet in exactly the line L. Then the back-projected
lines of xi, xj must meet inside L, implying Xi = Xj . For
any other center ck, we either have that ci, ck and L span
P3 or cj , ck and L span P3. This either implies Xi = Xk or
Xj = Xk by the above. Either way, repeating this process
shows that all Xi are equal and x = ΦC(X) for X = Xi.

2. For any line L ∈ Λ(X) that does not meet any center,
it is clear that ℓ = ΥC(L) satisfies ℓ ∈ LC and CiX ∈ ℓi.
Therefore LX

C ⊆ YX
C . For the other inclusion, we take an

element ℓ ∈ YX
C . If the intersection of the back-projected

planes Hi of ℓi contain a line L through X meeting no cen-
ter, then ℓ = ΥC |Λ(X)(L). This especially happens when
Hi intersect in a plane. Note that if the intersection contains
a line L that doesn’t meet X , then the intersection contains
the plane X ∨ L. We are left to check what happens if Hi

intersect in exactly a line L that meets a center, say ci. By
assumption, no other center is contained in this line. There-
fore Hj , j ̸= i is equal to cj ∨ L. Let L(n) ∈ Λ(X) be any

sequence of lines in Hi meeting no centers and such that
L(n) → L. It is clear that cj∨L(n) → Hj for j ̸= i n→∞
and ci ∨L(n) = Hi for each n. Then ΥC(L

(n))→ ℓ, show-
ing ℓ ∈ LX

C and we are done.

If the assumptions of Proposition 1.2 do not hold, then
the result doesn’t either. In the first statement, let c1, c2 be
centers that together withL span a plane P . Given any point
X ∈ P \ {c1, c2}, the element x = (C1X,C2X) satisfies
that x ∈MC and xi ∈ Ci·L. However, generally for a point
X ∈ P \L, we have x ̸∈ ImΦC |L. For the second statement,
consider two centers c1, c2 that together with X span a line
L. Consider two distinct planes H1, H2, both containing
the line L. They meet therefore exactly in L and the pair of
corresponding image lines (ℓ1, ℓ2) lies inYX

C for the camera
arrangement given by these two cameras. However, in the
image of ΥC |Λ(X), the back-projected planes H1 and H2

are always the same.

Proposition 1.4. ML
C and LX

C are irreducible. Further,

1. ML
C is isomorphic to P1. In particular, dimML

C = 1.

2. If the span of the centers ci and the point X are not
collinear, then dimLX

C = 2.

Proof. Both varieties are irreducible since the image of any
rational map from an irreducible variety is irreducible.

1. Since we assume no center lies in L, ΦC restricted
to L is defined everywhere, and therefore the image of this
restriction equalsML

C . This map is further injective since if
x ∈ ML

C , then the back-projected line of xi ∈ P2 meets L
in exactly a point X , which implies that X is the only point
on L for which x = ΦC(X).

2. Note that since dimΛ(X) = 2, we have dimLX
C ≤

2. Let U ⊆ Λ(X) be the subset of lines that meets no
center. Without restriction, assume c1, c2, and X span a
plane. Each line L ∈ U uniquely defines two planes via
c1∨L, c2∨L. Since dimΛ(X) = 2, projection of LX

C onto
the factors of c1, c2 is at least two dimensional, showing the
other inequality dimLX

C ≥ 2.

For the result below, let F ij denote the fundamental ma-
trix of Ci and Cj , see [8, 16].

Proposition 1.5. For a pointX ∈ P3 and line L in P3, let C
be a generic (random) camera arrangement of m cameras.

1. x ∈ ML
C if and only if xT1 F

1jxj = 0 for every j =
2, . . . ,m and xTi Ci · L = 0 for every i = 1, . . . ,m.

2. ℓ ∈ LX
C if and only if

det
[
CT

1 ℓ1 CT
2 ℓ2 CT

i ℓi
]
= 0,

det
[
CT

1 ℓ1 CT
3 ℓ3 CT

i ℓi
]
= 0

(15)

for i = 3, . . . ,m and ℓTi CiX = 0 for every i =
1, . . . ,m.



Proof. Note that in the generic case, the conditions of
Proposition 1.2 hold.

1. Recall that xTi Ci · L = 0 is equivalent to xi ∈ Ci · L.
As in the proof of Proposition 1.4, x ∈ ML

C is uniquely
determined by the intersection X ∈ L of its back-projected
lines. The back-projected lines Li of xi intersect if and only
if the pairs (L1, Li) intersect for i ≥ 2, which in turn is
equivalent to xT1 F

1ixi = 0 for the fundamental matrix F 1i.
2. Recall that ℓTi CiX = 0 is equivalent to CiX ∈ ℓi. By

[1, Theorem 2.5], ℓ ∈ LC if and only if the back-projected
planes meet in a line (assuming generic centers), and

det
[
CT

i ℓi CT
j ℓj CT

k ℓk
]
= 0, (16)

is equivalent to the back-projected planes of ℓi, ℓj , ℓk meet-
ing in at least a line. By Proposition 1.2, we are left to
show direction⇐. Let Hi denote the back-projected plane
of ℓi. For m = 2, the two back-projected planes always
meet. For m ≥ 3 we have that c1, c2, c3 with X span
P3 by genericity. Especially, the back-projected planes of
ℓ1, ℓ2, ℓ3 meet in a line by setting i = 1, j = 2, k = 3 in
Equation (16). Also, since c1, c2, c3, X span P3, they meet
exactly in a line. If m ≥ 4, it suffices to show that Hl for
l ≥ 4 meets H1, H2, H3 in a line. Note that either H1, H2

or H1, H3 meet exactly in a line. Let i, j ∈ {1, 2, 3} denote
indices for which this happens. Then for i, j and k = 4,
Equation (16) guarantees that Hi, Hj , H4 meet in exactly a
line, which suffices.

B.3. Smoothness and multidegrees

First, similar to what is done in the proof of the smooth-
ness properties of the multiview varietyMC in [16], we use
that multiview varieties are isomorphic to corresponding va-
rieties of back-projected lines or planes.

Proposition 1.6.

1. ML
C smooth.

2. If there are exactly two cameras, or the centers to-
gether with the point X span P3, then LX

C is smooth.

Proof.
1. SinceML

C is isomorphic to P1 by Proposition 1.4, it
is smooth.

2. Assume that the line ci ∨X contains cj for j ̸= i. In
the image we always have Hi = Hj for the back-projected
planes of ℓi, ℓj . Therefore LX

C is isomorphic to LX
C′ , where

C′ is equal to C after having removed the smallest amount of
cameras from C such that each line ci ∨X contains exactly
one center, namely ci itself. We, therefore, assume now that
C has this property: ci ∨ X contains only the center ci for
each i.

If m = 1, then one can check that LX
C is isomorphic to

P1 and if m = 2, that LX
C is isomorphic to P1 × P1. The

latter is for instance because any choice of ℓ1, ℓ2, where
CiX ∈ ℓi guarantees that the back-projected planes Hi

meet in a line containing X . Therefore we now assume that
there are at least three cameras.

First, we note that Λ(X) is a smooth variety and the lines
ci∨X are smooth subvarieties. Up to linear transformation,
we may assume that X = (1 : 0 : 0 : 0) without loss of
generality. Let a = (a0 : a1 : a2 : a3) be distinct from X .
Then (0 : 0 : a0 : 0 : a1 : a2) are the Plücker coordinates
of a ∨X . In particular,

Λ(X) = {w ∈ P5 : w0 = w1 = w3 = 0}. (17)

In Plücker coordinates, the line L = a ∨ X in coordinates
w and the fixed point b = (b0 : b1 : b2 : b3) ∈ P3 spann the
plane:

(0 : w2b1 − w4b0 : w2b2 − w5b0 : w4b2 − w5b1). (18)

The three linear non-zero functions in w in Equation (18)
vanishes if and only if b lies in the line L. Denote them by
fb,1, fb,2, fb,3 and fb(L) = (0 : fb,1(L) : fb,2(L) : fb,3(L))
for a line L ∈ Λ(X). Let c ̸= X . Since the blow-up of a
linear space at a linear space is smooth, then

ΓC := {(L, fc(L)) : c ∨X ̸= L ∈ Λ(X)}, (19)

is a smooth variety in Λ(X) × Gr(1,P3). Keep in mind
that fc(L) = c ∨ L. Next we consider the joint blow-up ΓC
defined as

{(L, fc1(L), . . . , fcm(L)) : ci ∨X ̸= L ∈ Λ(X)} (20)

in Λ(X) × Gr(1,P3)m. Take an element ℓ ∈ LX
C . By

the assumption that there are at least three cameras, and the
centers together with the point X span P3, we have that the
back-projected planes meet in exactly a line L containing
X . We have also assumed that L contains at most one cen-
ter. If ci ∈ L, then fix the index i, otherwise choose any
index i. Consider the natural projection,

πi : ΓC → ΓCi . (21)

Restricting to the set where L meets none of the other cen-
ters cj , j ̸= i, this map is an isomorphism. Since Γci is
smooth, that means that any element of ΓC , where L does
not meet cj , j ̸= i is smooth. But since i was arbitrary, all
of ΓC is smooth. Finally, since the back-projected planes
always meet in exactly a line, the projection onto the last m
coordinates

π : ΓC → L̃X
C , (22)

is an isomorphism and therefore L̃X
C is smooth, but this

is the variety of the back-projected planes of LX
C . In

particular, they are isomorphic, and therefore LX
C is also

smooth.



We denote byLd ⊆ Ph a general linear subspace of codi-
mension d, meaning dimension h− d. The multidegree of a
variety X ⊆ Ph1 × · · · × Phm is the function

D(d1, . . . , dm) := #(X ∩ (L
(1)
d1
× · · · × L(m)

dm
)), (23)

for (d1, . . . , dm) ∈ Nn such that d1 + · · · + dm = dimX .
First note that for any multiview variety, the function D is
symmetric under generic camera conditions. This implies
that for any permutation σ ∈ Sn, D(d1, . . . , dm) is equal to
D(dσ(1), . . . , dσ(m)).

Proposition B.2. Let C be a generic arrangement of cam-
eras.

1. The multidegree ofML
C is given by the single number

D(1, 0, . . . , 0) = 1.

2. The multidegree of LX
C is given by the two numbers

D(2, 0, . . . , 0) = 0 and D(1, 1, 0, . . . , 0) = 1.

Proof.
1. SinceML

C is of dimension 1 and due to symmetry, we
only need to consider one number, namely D(1, 0, . . . , 0).
A generic linear form intersecting the line C1 ·L leaves one
point, say x1. Its back-projected line meets L in a unique
point X . Recall that any point outside the back-projected
line is not projected onto x1 by C1. SinceML

C equals the
image of ΦC |L, X is therefore the unique point on L such
that x = ΦL(X).

2. By symmetry and the fact that dimLX
C = 2, we only

need to determine D(2, 0, . . . , 0) and D(1, 1, 0, . . . , 0).
Two generic linear forms intersecting Λ(C1X) ⊆ P2

leaves an empty set, why D(2, 0, . . . , 0) = 0. Intersect-
ing Λ(C1X) and Λ(C2X) each with generic linear forms
leaves one point in each copy of P2, say ℓ1 and ℓ2 that in-
tersect C1X and C2X respectively. Since they are generic
such that CiX ∈ ℓi their back-projected planes Hi both
contain X . By genericity, Hi meet in a unique line through
X that meets no center, showingD(1, 1, 0, . . . , 0) = 1.

B.4. The Euclidean distance problem

This section will be used for the proof of Theorem 1.8.
It also explains in more detail the reduction of parameters
mentioned in Section 2.1.1, via Theorem B.4.

It is not always true that linearly isomorphic varieties
have the same Euclidean distance degree. Take for instance
the circle and ellipse in R2. The circle has EDD 2 and the
ellipse has EDD 4. However, under additional assumptions,
the EDD is the same:

Proposition B.3. Let X ⊆ Cn, Y ⊆ Cm (with n ≥ m)
and let ψ : X → Y sending x to Ax + b be an affine
isomorphism given by a real full-rank matrix A such that

AAT = I . Fix a generic u ∈ Cn. Then, EDD(X) =
EDD(Y ).

In particular, if y∗1 , . . . , y
∗
k are the solutions to the criti-

cal equations of the ED problem on Y given Au + b, then
x∗1 = AT (y∗1 − b), . . . , x∗k = AT (y∗k − b) are the solutions
to the critical equations of the ED problem on X given u.

We work with the critical equations, as defined in [2].
Before the proof, we recall some linear algebra: We use
that ATA is a projection matrix onto ImATA, and that
Cn = ImATA ⊕ kerATA, by which we mean that any
x ∈ Cn can be written as a unique sum x1 + x2 with
x1 ∈ ImATA, x2 ∈ kerATA. Over the real numbers, this
is an orthogonal decomposition, i.e. for x1, x2 as above we
have x1 · x2 = 0 with respect to the standard inner product.
Moreover, the rank of ATA is the rank of A. This implies
that AT is injective on ImA and X ⊆ ImATA.

Proof. It is not hard to see that shifting a variety by a con-
stant does not change the EDD. Therefore, we put b = 0
and continue.

Let IX = ⟨f1, . . . , fr⟩ be the defining ideal of X . Let
gi = fi ◦ AT . We claim that IY = ⟨g1, . . . , gr⟩ is the
defining ideal of Y . Indeed, y ∈ Y if and only if AT y ∈
X if and only if fi(AT y) = 0 for each i. Further, a full-
rank linear change of coordinates preserves the radicality of
ideals.

Since ψ is an isomorphism, x ∈ X is smooth if and
only if Ax ∈ Y is smooth. Now for a generic u ∈ Cn, let
z∗ = (z1, . . . , zm) ∈ Y be smooth and a solution to the
critical equations given Au. Write cY = codimCmY . Then

gi(z
∗) = 0 for all i & rank


(z∗ −Au)T
∇g1(z∗)

...
∇gk(z∗)

 = cY . (24)

We define w∗ = AT z∗ and prove that its a solution to the
critical equations of X given u. First, note that fi(w∗) = 0
for each i by construction, andA(w∗−ATAu) = z∗−Au.
By the chain rule, ∇gi(z∗) = ∇fi(AT z∗)AT . Thus we
also have

rank



(w∗ −ATAu)T

∇f1(w∗)
...

∇fk(w∗)

AT

 = cY . (25)

Note that the submatrix of the last k rows of the matrix in
Equation (25) has rank cY . Now we argue that for cX =



codimCnX ,

rank


(w∗ −ATAu)T

∇f1(w∗)
...

∇fk(w∗)

 = cX . (26)

Because w∗ is smooth in X , last k rows of the matrix in
Equation (26) are of rank cX . The (w∗ − ATAu)T lies in
the row span of those k rows, and observe that w∗−ATAu
lies in ImATA. This is because z∗ lies in the image of A.
Therefore,

A(w∗ −ATAu) ∈ span{A∇fi(w∗)T } (27)

implies

w∗ −ATAu ∈ span{ATA∇fi(w∗)T }. (28)

Since X ⊆ ImATA, it follows that ∇fi(w∗)T span
kerATA. This is because fi generate the (real) lin-
ear forms lj that vanish on this linear space ImATA
and their gradients span the (real) orthogonal complement
kerATA. So let λi be such that w∗ − ATAu equals
the sum of λiATA∇fi(w∗)T . Then w∗ − ATAu equals∑
λi∇fi(w∗)T − v, for some v ∈ kerATA, spanned by

∇fi(w∗)T . This proves Equation (26).
Finally, we motivate why we can change ATAu to u

in Equation (26). Showing that ATAu − u is linearly
dependent on ∇fi(w∗)T is suffcient due to the fact that
(w∗−ATAu)+(ATAu−u) = w∗−u. However,ATAu−u
lies in kerATA, and therefore this follows from the above.

For the other direction, let w∗ be a smooth point satisfy-
ing

fi(w
∗) = 0 for all i & rank


(w∗ − u)T
∇f1(w∗)

...
∇fk(w∗)

 = cX . (29)

Then (w∗ − u)T is a linear combination of the rows
∇fi(w∗). Then (w∗ − u)TAT is a linear combination of
∇fi(w∗)AT . Writing z∗ = Aw∗ and recalling that this is
a smooth point of Y , we have that (z∗ − Au)T is a linear
combination of∇gi(z∗). Therefore,

gi(z
∗) = 0 for all i & rank


(z∗ −Au)T
∇g1(z∗)

...
∇gk(z∗)

 = cY , (30)

are all satisfied.

In the theorem below we use the relation between C and
C̃ and Ĉ from Theorem 1.3.

Theorem B.4. Let Ui ⊆ P2 be affine patches and write
U = U1 × · · · × Um. Fix real matrices Ai : C3 → C2

such that AiA
T
i = I . Let A : (C3)m → (C2)m be the map

that sends (x1, . . . , xm) ∈ (P2)m to (A1x1, . . . , Amxm) ∈
(P1)m. Let u ∈ U1 × · · · × Um be generic.

1. Assume Ui ∩ (Ci · L) ̸= ∅ for each i. Write Vi =
Ai(Ui∩ (Ci ·L)) ⊆ R2, and let V = V1×· · ·×Vm. If
y∗ is a critical point of the ED problem forM1,1

C̃
∩ V

given Au, then x∗ = AT y∗ is a critical point of the
ED problem forML

C ∩ U given u.

2. Assume Ui ∩ Λ(CiX) ̸= ∅ for each i. Write Vi =
Ai(Ui ∩ Λ(CiX)), and let V = V1 × · · · × Vm. If
y∗ is a critical point of the ED problem forM2,1

Ĉ
∩ V

given Au, then x∗ = AT y∗ is a critical point of the
ED problem for LX

C ∩ U given u.

In both cases, this is a bijection of critical points.

Proof. It is a consequence of Theorem 1.3 that A is an iso-
morphism of affine varieties in both 1. and 2 (we set ψC,i =
Ai). Then we can directly apply Proposition B.3.

C. Euclidean Distance Degree Preliminaries
The main theorem of this article is:

Theorem 1.7. Let C be a generic arrangement of m cam-
eras.

1. EDD(ML
C ) = 3m− 2.

2. If m ≥ 3, then EDD(LX
C ) = 9

2m
2 − 19

2 m+ 3.

In order to compute these two Euclidean distance de-
grees we make use of the following theorem:

Theorem C.1 (Theorem 3.8 of [12]). Let X ⊆ Cn be a
smooth variety and let Uβ denote the complement of the hy-
persurface

∑
1≤i≤n(zi−βi)2+β0 = 0 in Cn where z ∈ Cn

and β ∈ Cn+1. Then,

EDD(X) = (−1)dimXχ(X ∩ Uβ). (31)

Here χ is the topological Euler characteristic. In the next
section, we closely follow [12], by specializing their tech-
niques to our setting. First, we provide the reader with help-
ful preliminaries. We often take this section for granted and
do not always refer to specific results from it.

We have verified with numerical evidence that these for-
mulas hold for m ≤ 10. The code is attached.

C.1. The Euler characteristic

There are different approaches to defining the Euler char-
acteristic of a topological space. References to the broader
topic of algebraic topology include [9, 13]. For instance,



given a triangulation of a topological space, the Euler char-
acteristic is the alternating sum

k0 − k1 + k2 − . . . , (32)

where ki is the number of simplices of dimension i. An n-
simplex is a polytope of dimension nwith n+1 vertices, and
a triangulation is essentially a way of writing a space as a
union of simplices that intersect in a good way. Importantly,
all real and complex algebraic varieties can be triangulated
[10] with respect to Euclidean topology.

The Euler characteristic can more generally be defined
for CW complexes and any topological space through sin-
gular homology. For spaces where all definitions apply, they
are the same.

The following is used in [12].

Lemma C.2. Let N,M be subvarieties of a complex vari-
ety.

1. χ(M ∪N) = χ(M) + χ(N)− χ(M ∩N).

2. χ(M \N) = χ(M)− χ(N).

The above does not hold over the real numbers. For in-
stance, χ(R) = 1, while χ({x}) = 1 and χ(R \ {x}) = 2.

Lemma C.3 ([9, Section 2.1]). Let f : X → Y be a home-
omorphism, such as an isomorphism between varieties, then

χ(X) = χ(Y ). (33)

Lemma C.4 ([13, Chapter 10, Section 1]). The Euler Char-
acteristic of Pn is n+ 1.

C.2. Chow rings

We refer to [3,4] for a thorough treatment of intersection
theory, and [6] for a friendly introduction. Here we recall
the basic definitions and results that are needed to under-
stand this material.

Let X be a variety. We denote by Z(X) the free abelian
group of formal integral linear combinations of irreducible
subvarieties of X . An effective cycle is a formal sum∑
niYi of irreducible subvarieties Yi with ni ≥ 0. A

zero-cycle is a formal sum of zero-dimensional varieties Yi.
The degree of a zero-cycle is the sum of the associated in-
tegers ni as in [4, Definition 1.4]. We say that two irre-
ducible subvarieties Y0, Y∞ ∈ Z(X) are rationally equiv-
alent, and write Y0 ∼ Y∞ or Y0 ≡ Y∞ if there exists an
irreducible variety W ⊆ X × P1, whose projection onto
P1 is dense, such that W ∩ (X × {(1 : 0)}) = Y0 and
W ∩ (X × {(0 : 1)}) = Y∞.

The Chow group of X is

CH(X) = Z(X)/ ∼ . (34)

For a subvariety, Y ⊆ X , write [Y ] for the class in CH(X)
of its associated effective cycle. We now aim to turn this
group into a ring, by giving it a multiplicative structure.

Let X be an irreducible variety and let Y1, Y2 be subva-
rieties. Y1 and Y2 intersect transversely at p ∈ Y1 ∩ Y2 if
Y1, Y2 andX are smooth at p and TpY1+TpY2 = TpX . Fur-
ther, Y1 and Y2 are generically transverse if they intersect
transversely at generic points of every irreducible compo-
nent of the intersection Y1 ∩ Y2.

Theorem C.5. Let X be a smooth variety. Then there
is a unique product structure on CH(X) such that when-
everA,B are generically transverse subvarieties ofX , then
[A][B] = [A ∩ B]. This product makes CH(X) into a
graded ring, where the grading is given by codimension.

A natural example of Chow rings are those of products
of projective space,

CH((Pn)s) ∼= Z[[H1], . . . , [Hs]]/⟨[H1]
n+1, . . . , [Hs]

n+1⟩.
(35)

In the above ring isomorphism, [Hi] represent the class of a
hyperplane in CH(Pn) in factor i.

To a morphism of smooth varieties f : X → Y , we can
associate, the pushforward f∗ : CH(X)→ CH(Y ) and the
pullback f∗ : CH(Y )→ CH(X), two Chow ring maps.

We define the pushforward on irreducible subvarieties
A ⊆ X by setting

f∗(A) :=


0 if the generic fiber of f |A

is infinite,
d[f(A)] if the generic fiber of f |A

has cardinality d.

(36)

By generic fiber we mean f |−1
A (y) for generic y ∈ f(A).

We say that A ⊆ Y is generically transverse to f
if f−1(A) is generically reduced and the codimension of
f−1(A) in X equals the codimension of A in Y . The pull-
back f∗ is defined as the unique map CH(Y ) → CH(X)
such that, if A ⊆ Y is generically transverse to f , then
f∗[A] := [f−1(A)]; see [3, Theorem 1.23].

C.3. Chern classes

In intersection theory, Chern classes are algebraic invari-
ants of a variety that lie in its Chow ring. General references
again include [3, 4]. Here we only state the properties of
them that we use.

Chern classes c(E) are in general defined for vector bun-
dles E, but when the vector bundle is the tangent bundle of
a smooth variety X , then we write c(X) for the total Chern
class.

Lemma C.6 (Whitney Sum Formula [4, Theorem 3.2]). For
a short exact sequence 0→ E′ → E → E′′ → 0 of vector



bundles on a variety X , we have for the total Chern classes
that

c(E) = c(E′)c(E′′). (37)

By a divisor of X we mean a subvariety of codimension
one. Let i : A ↪→ X be the inclusion map for a subva-
riety A ⊆ X . For an element [V ] ∈ CH(X), the restric-
tion [V ]|A denotes the pullback i∗[V ]. If V is generically
transverse to i, then [V ]|A = [V ∩ A]. We observe that
[V ]|A[U ]|A equals i∗[V ]i∗[U ] and since i∗ is a ring homor-
phism, this equals i∗([V ][U ]) = ([V ][U ])A.

Lemma C.7 (Adjunction Formula [4, Example 3.2.11], [3,
Theorem 5.3]). If X is smooth variety and D a smooth di-
visor on X , then

c(D) =
c(X)|D

(1 + [D])|D
. (38)

Lemma C.8 (Functoriality [3, Theorem 5.3]). Let f : X →
Y be morphism of smooth varieties, then

f∗c(E) = c(f∗E), (39)

for vector bundles E on Y .

By putting E to be the tangent bundle of Y , its pullback
equals X if f is an isomorphism, which we make precise
below.

Lemma C.9. Let f : X → Y be an isomorphism, then

c(X) = f∗c(Y ). (40)

Lemma C.10 ([4, Example 3.2.11]). Let [H] be the class
of a hyperplane of Pn. Then we have

c(Pn) = (1 + [H])n+1. (41)

An important property we use is the next result. The top
Chern class ctop(X) of X is the zero-cycle part written of
c(X) ∈ CH(X).

Theorem C.11 (Chern-Gauss-Bonnet [7, Section 3.3]). For
a smooth variety X , we have

χ(X) = deg(ctop(X)). (42)

It happens that authors use the integration symbol for the
degree of a zero-cycle [Z] in X the follows sense,∫

X

[Z] := deg(Z). (43)

More generally, let [Z] be a formal sum of irreducible sub-
varieties of X of codimension k. Consider the inclusion

i : A ↪→ X for a k-dimensional variety A. We get the
following, ∫

A

[Z]|A =

∫
A

i∗[Z] =

∫
X

[Z][A], (44)

where we assume that i−1(Z) is a 0-dimensional.
Next, we consider Chern classes of blow-ups. First some

notation. Let X ⊆ Y be an inclusion of smooth varieties.
Let Ỹ be the blow-up of Y at X . Let X̃ be the exceptional
locus. Let π, ρ be the projection maps and j, i the inclusion
maps. The following diagram commutes:

X̃ Ỹ

X Y

j

ρ π

i

. (45)

Porteus’ formula [4, Theorem 15.4] gives an expression for
the Chern class of Ỹ in terms of the Chern classes of X
and Y . For our purposes, we only need the following spe-
cial case of this theorem, which follows from [4, Example
15.4.2] as stated in [12].

Theorem C.12. In Equation (45), let X be a set of m dis-
tinct points Xi. Then

c(Ỹ ) = π∗c(Y ) +

m∑
i=1

(
(1 + ηi)(1− ηi)d − 1

)
, (46)

where d = dimY and ηi = j∗(ρ
∗[Xi]).

C.4. Linear systems

In the proof of Theorem 1.7, we use the language of lin-
ear systems. We don’t go through many details here, in-
stead, we recall basic definitions. An introduction to line
bundles and other relevant concepts are given in the lecture
notes of Vakil [18]. For a rational function s on a projective
variety X , we define (s) =

∑
ordZ(s)Z ∈ CH(X), where

ordZ(s) is the order of s at the point Z. Two divisorsD,D′

are linearly equivalent if D′ = D + (s) for some rational
function s.

Definition C.13. Let X be a smooth variety. A complete
linear system |D0| of an effective divisor D0 (

∑
niDi so

that ni ≥ 0) is the set of all effective divisors linearly equiv-
alent to it. A linear system is a linear subspace of a com-
plete linear system.

Definition C.14. Let D0 be an effective divisor.
Γ(X,O(D0)) is the of global sections s on X with
(s) +D0 ≥ 0.

Γ(X,O(D0)) is interpreted as a complete linear system
via the map f 7→ (f) +D0 ∈ CH(X). Since (f) = (g) if
and only if they differ by a non-zero scalar (zeros and poles



determine a rational function), Γ(X,O(D0)) can be viewed
as a projective space. Subspaces of Γ(X,O(D0)) are also
called linear systems.

The base locus of a linear system is the intersection of
the zero sets of all global sections onX of the linear system.
A linear system is basepoint free if the base locus is empty.
In other words, for every point x ∈ X , there is a global
section s such that s(x) ̸= 0.

Lemma C.15. The restriction of a basepoint free linear sys-
tem is basepoint free.

Proof. Let V be a subvariety of X . Take v ∈ V . Since
X is basepoint free, there is a global section s of the linear
system for X such that s(x) ̸= 0. Restricting this section
to V we get a global section s|V for the restricted linear
system that is non-zero on v.

A linear system on a smooth varietyX is called very am-
ple if it allows the variety to be embedded into a projective
space in a way that preserves its geometry. For a basepoint
free linear system, let a0, . . . , an be global sections that do
not simultaneously vanish. The linear system is very ample
if

g : X → Pn,

x 7→ (a0(x) : · · · : an(x))
(47)

is a closed immersion. This means that g is isomorphic onto
its image, or that g∗(O(1)), the pullback of the hyperplane
bundle O(1) on Pn, is isomorphic to L. The restriction of a
very ample linear system is very ample.

We define a divisor D0 to be basepoint free if its linear
system Γ(X,O(D0)) is basepoint free. We define a divisor
to be very ample analogously.

One importance of basepoint free linear systems comes
in the form of this celebrated result:

Theorem C.16 (Bertini’s Theorem [7, Section 1.1]). Let X
be a smooth complex variety and let Γ be a positive dimen-
sional linear system on X . Then the general element of Γ
is smooth away from the base locus.

C.5. Whitney stratification

A natural way to partition a varietyX is via the inclusion

X ⊇ sing(X) ⊇ sing(sing(X)) ⊇ · · · , (48)

where sing denote the singular locus. However, not all
points of sing(X) \ sing(sing(X)) necessarily look locally
the same. A more fine grained version of this partition is
called a Whitney stratification [17]. We don’t recall the def-
inition here, because all we need to know is that a Whitney
stratification of a smooth variety X is S = {X} and the
Whitney stratification of a variety X whose singular locus
is a finite set of point is S = {Xreg, {s1}, . . . , {sr}}, where

Xreg is the set of smooth points of X and s1, . . . , sr are the
singular points of X . By a theorem of Whitney, any alge-
braic variety has a Whintey stratification [19, 20].

Before we state the main theorem on Whitney stratifica-
tions that we use in this article, we define Milnor fibers [11,
Chapter 10]. Let X be a smooth variety and V a divisor
on X . Choose any Whitney stratum S ∈ S and any point
x ∈ S. In a sufficiently small ball Bϵ,x centered at x, the
hypersurface V is equal to the zero locus of a holomorphic
function f . The Milnor fiber of V at x ∈ S is given by

Fx := Bϵ,x ∩ {f = t}, (49)

for small |t| greater than 0. The Euler characteristic of Fx is
independent of the choice of the local equation f at x, and
it is constant along the given stratum containing x.

Theorem C.17 ([15], [11, Theorem 10.4.4]). Let X be a
smooth complex projective variety, and let V be a very am-
ple divisor in X . Let V = ⊔s∈SS be a Whitney stratifica-
tion of X . Let W be another divisor on X that is linearly
equivalent to V . Suppose W is smooth and W intersects
V transversally in the stratified sense (with respect to the
above Whitney stratification). Then we have

χ(W )− χ(V ) =
∑
S∈S

µSχ(S \W ), (50)

where µS is the Euler characteristic of the reduced coho-
mology of the Milnor fiber at any point x ∈ S.

The Euler characteristic of the reduced cohomology is
the normal Euler characteristic minus one.

D. Computation of Euclidean Distance Degrees
Let X ∈ P3 be a point and L ∈ Gr(1,P3) a line. Let

C be a generic arrangement of m cameras. For the sake
of notation, we write ML

m for ML
C and LX

m for LX
C . We

assume from now on that m ≥ 3 for the anchored line mul-
tiview variety LX

m. We recall notation from [12]. Write
each P2 as C2 ∪ P1

∞, where C2 is the chosen affine chart
and P1

∞ is the line at infinity. Denote the hypersurface
P2 × · · · × P1

∞ × · · · × P2 in (P2)m by H∞,i, where P1
∞

is the i-th factor. Let H∞ = ∪mi=1H∞,i. Denote by HQ

the closure of the hypersurface
∑2m

i=1(zi − βi)2 + β0 = 0
in (P2)m. In the remainder of this proof, we will use the
following notation:

DL
Q :=ML

m ∩HQ, D
L
∞,i :=ML

m ∩H∞,i,

DL
∞ :=ML

m ∩H∞,
(51)

for the anchored point multiview variety, and

DX
Q := LX

m ∩HQ, D
X
∞,i := LX

m ∩H∞,i,

DX
∞ := LX

m ∩H∞,
(52)



for the anchored line multiview variety. Write ML
m and LX

m

for the corresponding affine varieties. Notice thatH∞ is the
complement of the affine chart C2m in (P2)m, thus DL

∞ is
the complement of ML

m inML
m and DX

∞ is the complement
of LX

m in LX
m and. As derived in [12], we have,

χ(ML
m ∩ Uβ) = (53)

χ(ML
m)− χ(DL

∞) + χ(DL
Q ∩DL

∞)− χ(DL
Q), (54)

χ(LX
m ∩ Uβ) = (55)

χ(LX
m)− χ(DX

∞) + χ(DX
Q ∩DX

∞)− χ(DX
Q ). (56)

The structure of the proof of Theorem 1.7 is to calculate the
four terms of Equation (54) and ??.

Lemma D.1. For a fixed X and L, let C be a generic ar-
rangement of m cameras.

1. χ(ML
C ) = 2.

2. χ(LX
C ) = 3 +m.

Proof.
1. ML

C is isomorphic to P1 and we are done by
Lemma C.4.

2. Recall that we assume m ≥ 3. By genericity, ci are
not collinear. Therefore the back-projected planes of an el-
ement ℓ ∈ LX

C meet in exactly a line. Consider the partition

LX
C = U ∪

m⋃
i=1

Ui, (57)

where U is the set of ℓ ∈ LX
C whose back-projected planes

meet in a line away from any center, and Ui is the set of
ℓ ∈ LX

C whose back-projected planes meet in ci ∨ X . By
Lemma C.2, χ(LX

C ) = χ(U) +
∑
χ(Ui). Since ΥC is

injective on the subset of Λ(X) \ ∪(ci ∨ X), we see via
the isomorphism U ∼= P2 that U is isomorphic to P2 mi-
nus m points. By Lemma C.3, χ(U) = 3 − m. If in-
stead ℓ ∈ LX

C meet exactly in ci ∨ X , then for j ̸= i we
have ℓj = Cj · (ci ∨ X), and ℓi is any line in Λ(CiX).
However, Λ(CiX) ∼= P1, implying χ(Ui) = 2. In total,
χ(LX

C ) = 3−m+ 2m = 3 +m.

In the next step, we compute the second terms of the
right-hand sides of Equation (54) and ??.

Lemma D.2. For a fixed X and L, let C be a generic ar-
rangement of cameras of m cameras.

1. χ(DL
∞) = m.

2. χ(DX
∞) = 2m−

(
m
2

)
.

Proof.
1. Each DL

∞,i is a generic point ofML
m. By additivity of

the Euler characteristic, we have that

χ(DL
∞) = χ(∪mi=1D

L
∞,i) =

m∑
i=1

χ(DL
∞,i) = m. (58)

2. Each DX
∞,i is a curve inside LX

m. This curve corre-
sponds precisely to fixing the i-th back-projected plane Hi

to be generic through ci and X . Such a plane contains no
other center, and a line in this plane uniquely determines all
other back-projected planes. Therefore DL

∞,i is isomorphic
to the set of lines in Hi through X , which in turn is isomor-
phic to P1. We get χ(DX

∞,i) = 2. Moreover, χ(DX
∞,i) only

have pairwise intersections, and two generic back-projected
planes Hi, Hj through ci, X and cj , X , respectively, meet
in exactly a generic line throughX . ThereforeDX

∞,i∩DX
∞,j

consists of a single element. We then get

χ(DX
∞) = χ(∪mi=1D

X
∞,i) (59)

=

m∑
i=1

χ(DX
∞,i)−

∑
i<j

χ
(
DX

∞,i ∩DX
∞,j

)
(60)

=

m∑
i=1

2−
∑
i<j

1 = 2m−
(
m

2

)
, (61)

by additivity.

We recall that HQ is the closure of the affine hypersur-
face ∑

1≤i≤2m

(zi − βi)2 + β0 = 0, (62)

in (P2)m. We introduce homogeneous coordinates
xi, y2i−1, y2i with z2i−1 = y2i−1/xi and z2i = y2i/xi for
1 ≤ i ≤ m. Write x = x1 · · ·xm. Then the homogeniza-
tion of Equation (62), and hence the equation of HQ, is

m∑
i=1

(
(y2i−1 − β2i−1xi)

2 + (y2i − β2ixi)2
) x2

x2i
+

+β0x2 = 0.

(63)

Lemma D.3.

1. χ(DL
Q ∩DL

∞) = 0;

2. χ(DX
Q ∩DX

∞) =
(
m
2

)
.

Proof. We homogenize the equation defining HQ as in
Equation (63), and assume without loss of generality that



H∞,i is defined by the equation xi = 0. We have by in-
spection,

HQ ∩H∞,i ={y2i−1 +
√
−1y2i = xi = 0}∪ (64)

∪{y2i−1 −
√
−1y2i = xi = 0}∪ (65)

∪
⋃
j ̸=i

{xi = xj = 0}. (66)

Let,

KL,+
i :=ML

m ∩ {y2i−1 +
√
−1y2i = xi = 0},

KL,−
i :=ML

m ∩ {y2i−1 −
√
−1y2i = xi = 0},

AL
i,j :=ML

m ∩ {xi = xj = 0}, j ̸= i.

Write KX,+
i ,KX,−

i and AX
i,j analogously for intersecting

with LX
m instead ofML

m. With this notation,

ML
m ∩HQ ∩H∞,i = KL,+

i ∪KL,−
i ∪

⋃
i ̸=j

AL
i,j , (67)

LX
m ∩HQ ∩H∞,i = KX,+

i ∪KX,−
i ∪

⋃
i ̸=j

AX
i,j . (68)

As we shall see below, KL,±
i ,KX,±

i = ∅. Therefore, by
inclusion/exclusion,

χ(DL
Q ∩DL

∞) = χ(
⋃
i̸=j

AL
i,j), (69)

χ(DX
Q ∩DX

∞) = χ(
⋃
i̸=j

AX
i,j). (70)

1. By construction, the i-th factor of any element of
KL,±

i ⊆ (P2)m is fixed equal to [0 : ∓
√
−1 : 1]. How-

ever, by genericity, this point does not lie in Ci · L, imply-
ing that KL,±

i = ∅. Regarding AL
i,j , setting xi = 0, xj = 0

corresponds to fixing two generic image lines in the corre-
sponding image planes. The back-projected planes of those
image lines meet in a generic line, and such a line does not
meet L. This implies AL

i,j = ∅, and we are done by Equa-
tion (69).

2. By construction, the i-th factor of any element of
KX,±

i ⊆ (P2)m is fixed equal to [0 : ∓
√
−1 : 1].

However, by genericity, the line this vector defines does
not contain CiX , implying that KX,±

i = ∅. Regarding
AX

i,j , setting xi = 0, xj = 0 corresponds to intersecting
Λ(CiX),Λ(CjX) with generic hyperplanes. They intersect
in the single elements ℓi, ℓj . The back-projected planes of
ℓi, ℓj meet in a generic line through X . Therefore AX

i,j is a
generic point of LX

m. All AX
i,j are disjoint, and we are done

by Equation (70).

The hypersurface HQ in the hypersurface HQ is defined
by Equation (63). It follows by Appendix C.2 that we have
the following linear equivalence of divisors in (P2)m:

HQ ≡ 2H∞,1 + · · ·+ 2H∞,m. (71)

Then as divisors of the anchored multiview varieties,

DL
Q ≡ 2ML

m ∩H∞,1 + · · ·+ 2ML
m ∩H∞,m, (72)

DX
Q ≡ 2LX

m ∩H∞,1 + · · ·+ 2LX
m ∩H∞,m. (73)

Consider the well-defined projections πL :ML
m → L, and

πX : LX
m → Λ(X), sending image points and image lines

to the intersection of their back-projected lines or planes. In
the Chow ring of P3, every element of L is equivalent. We
denote by DL

H the preimage of a generic hyperplane in L,
i.e. a generic point of L. In the Chow ring of Gr(1,P3),
every element of Λ(X) is equivalent. In particular, we have
π∗
X [H] = π∗

X [H ′], where H,H ′ are hyperplanes of lines
in Λ(X), where a hyperplane of lines is the set of lines in
Λ(X) contained in some hyperplane of P3 through X . Let
H be a generic plane of lines in Λ(X) and DX

H = π∗
X(H).

Let H ′ be a generic among the planes of lines that contain
ci ∨ X for some i. In the Chow ring of LX

m, π∗
X(H ′) is

the union of LX
m ∩H∞,i and the variety EX

i of elements ℓ
whose back-projected planes meet exactly in the line ci∨X .
In other words, EX

i = π∗
X(ci ∨X). We get

ML
m ∩H∞,i ≡ DL

H ,

LX
m ∩H∞,i ≡ DX

H − EX
i .

(74)

It follows that,

DL
Q ≡ 2mDL

H ,

DX
Q ≡ 2mDX

H − 2EX
i − · · · − 2EX

i .
(75)

Note that EX
i ̸≡ EX

j for i ̸= j.

Lemma D.4.

1. [DL
H ]2 = 0.

2. [EX
i ]3 = 0.

3. [DX
H ]3 = 0.

4. [DX
H ][EX

i ] = 0 for i ̸= j.

5. [EX
i ][EX

j ] = 0 for i ̸= j.

Proof.
1,2,3. This is a consequence of the fact that DL

H is a
proper subvariety of an irreducible variety of dimension 1.
Similarly, both EX

i and DX
H are proper subvarieties of an

irreducible variety of dimension 2.
4. For a generic plane of lines H through X , DX

H ∩ EX
i

is empty. This suffices by Theorem C.5.
5. We use the fact that EX

j ≡ DX
H −LX

m ∩H∞,j . By 4.,
intersecting the right-hand side with EX

i yields the follow-
ing EX

i ∩ (LX
m∩H∞,j). Now the j-th factor of LX

m∩H∞,j

consists of a fixed generic line through CiX . Its back-
projected plane does not contain ci ∨ X . It follows that
the intersection must be empty. This suffices by Theo-
rem C.5.



Proposition D.5. In the chow ring of (P2)m, we have the
following identities.

1. c(ML
m) = 1 + 2[DL

H ];

2. c(LX
m) = (1 + [DX

H ])3 −
∑m

i=1

(
[EX

i ] + [EX
i ]2

)
.

Proof.
1. Follows from the fact that ML

m is isomorphic to P1,
which in turn has Chern class 1 + 2[x] by Lemma C.10,
where [x] represents a point of P1.

2. Recalling that we in the proof of Proposition 1.6
viewed LX

m as a blow-up, the Chern class formula from Ap-
pendix C.3 gives us

c(LX
m) =(1 + [DX

H ])3+ (76)

+

m∑
i=1

(
(1 + [EX

i ])(1− [EX
i ])2 − 1

)
. (77)

After simplification and the fact that [EX
i ]3 = 0, we get the

statement.

As a sanity check, we note that Proposition D.5 gives
us the correct Euler characteristics via the Chern-Gauss-
Bonnet theorem. The top Chern class of ML

m is 2[DL
H ],

where [DL
H ] is the class of a single point. The top Chern

class of LX
m is 3[DX

H ]2 +
∑
−[EX

i ]2. Now [DX
H ]2 corre-

sponds to the preimage of the intersection of two generic
planes through X; it corresponds to a single point. Next,
due to the fact that EX

i ≡ DX
H − LX

m ∩H∞,i, we have that
[EX

i ]2 ≡ [DX
H ]2 − 2[DX

H ∩ LX
m ∩H∞,i] + [LX

m ∩H∞,i]
2.

However, [DX
H ∩LX

m∩H∞,i] is a single point and the inter-
section (LX

m ∩ H∞,i)
2 is empty. Therefore [EX

i ]2 is equal
to minus a single point. The Chern-Gauss-Bonnet theorem
then states that

χ(ML
m) = 2,

χ(LX
m) = 3 +m.

(78)

We aim to use Theorem C.17 to determine the Euler
characteristic of DX

Q and DL
Q. We start by considering

generic divisors in their linear systems.

Lemma D.6.

1. A generic divisor D′L in the linear system
Γ(ML

m,O(DL
Q)) is smooth;

2. A generic divisor D′X in the linear system
Γ(LX

m,O(DX
Q )) is smooth.

Proof. We recall that

HQ ≡ 2H1,∞ + · · ·+ 2Hm,∞. (79)

Any variety that is the union of hypersurfaces from i =
1, . . . ,m of double lines in factor i is linearly equivalent to
HQ. It is clear that intersecting all such unions gives the
empty set, and therefore the base locus of the divisor HQ is
empty. By Lemma C.15, the restriction of HQ toML

m and
LX
m gives a basepoint-free linear system. We are done by

Bertini’s theorem.

Proposition D.7.

1. If D′L is a generic divisor in the linear system
Γ(ML

m,O(DL
Q)), then χ(D′L) = 2m;

2. If D′X is a generic divisor in the linear system
Γ(LX

m,O(DX
Q )), then χ(D′X) = −4m2 + 8m.

Proof.
1. For the purpose of applying the Chern-Gauss-Bonnet

theorem, we want to find the top Chern class of D′L, which
is c0(D′L) = 1. Using D′X ≡ DX

H , it follows that χ(D′L)
equals∫

D′L
1|D′L =

∫
ML

m

1[D′X ] =

∫
ML

m

2m[DX
H ], (80)

which equals 2m since [DX
H ] is the class of one simple point

inML
m.

2. By the adjunction formula and considering the fact
that D′X ≡ DX

Q , we have

c(D′X) =
c(LX

m|D′X )

(1 + [D′X ])|D′X

=
(
c(LX

m)(1 + [DX
Q ])−1

)∣∣∣
D′X

.

(81)

Throughout this proof, we use Lemma D.4. The identity
(1 + u)−1 = 1− u+ u2 − · · · and Equation (75) imply

(1 + [DX
Q ])−1 =1− 2m[DX

H ] + 2
∑

[EX
i ]+

+ 4m2[DX
H ]2 + 4

∑
[EX

i ]2.
(82)

For the purpose of applying the Chern-Gauss-Bonnet the-
orem, we want to find the top Chern class of D′X , which
is c1(D

′X). However, this is the first Chern class of
c(LX

m)(1 + [DX
Q ])−1 restricted to D′X , by Equation (81).

Now using Equation (82) and Proposition D.5, the first
Chern class of c(LX

m)(1 + [DX
Q ])−1 can be written

(−2m+ 3)[DX
H ] +

∑
[EX

i ]. (83)



It follows that χ(D′X) equals∫
D′X

(
(−2m+ 3)[DX

H ] +
∑

[EX
i ]

)∣∣∣
D′X

=

=

∫
LX

m

(
(−2m+ 3)[DX

H ] +
∑

[EX
i ]

)
[D′X ]

=

∫
LX

m

(−4m2 + 6m)[DX
H ]2 − 2

∑
[EX

i ]2,

(84)

where we in the last equality used Equation (75). Recall
then that deg[DX

H ]2 = 1 and deg[EX
i ]2 = −1. So Equa-

tion (84) adds to −4m2 + 6m+ 2m.

If we consider y2i−1, y2i and xi as sections of line bun-
dles ML

m and LX
m, then DL

Q = ML
m ∩ HQ, respectively

DX
Q = LX

m ∩ HQ, is a general divisor in the linear system
given by the subspace Γ′L of Γ(ML

m,O(2mDL
H)), respec-

tively Γ′X of Γ(LX
m,O(2mDX

H −2EX
i −· · ·−2EX

i )), gen-
erated by the sections

1. (y21 + y22)x
2
2 · · ·x2m + · · ·+

+ (y22m−1 + y22m)x21 · · ·x2m−1,

2. x21 · · ·x2m,

3.
y2i−1

xi
x21 · · ·x2m for i = 1, . . . ,m,

4.
y2i
xi
x21 · · ·x2m for i = 1, . . . ,m.

(85)

To be precise, DL
Q and DX

Q are defined through global sec-
tions that determined are by HQ, and HQ is a linear combi-
nation of the generators of Equation (85) with generic coef-
ficients as in Equation (63).

Proposition D.8.

1. DL
Q is smooth;

2. The singular locus of DX
Q is the set of

(
m
2

)
points⋃

i̸=j

DX
∞,i ∩DX

∞,j . (86)

Proof.
1. The base locus of Γ′L is ∪DL

∞,i ∩ DL
∞,j . Indeed,

this is precisely the zero locus of the polynomials of Equa-
tion (85). However, each DL

∞,i ∩ DL
∞,j is empty. By

Bertini’s theorem, DL
Q is smooth away from this empty set.

2. Similarly, the base locus of Γ′X is ∪DX
∞,i ∩ DX

∞,j ,
and each DX

∞,i ∩ DX
∞,j is a point. On the other hand, DX

Q

has multiplicity at least 2 along ∪DX
∞,i∩DX

∞,j . We can see
this by looking at the Jacobian condition. The vanishing
ideal of LX

m together with the additional equation of HQ

defines DX
Q , a variety of dimension 1. At Si,j , the gradient

of the generators of LX
m give the correct corank 2 since it

is smooth, but the additional equation has gradient zero so
that the corank is not equal to 1.

Proposition D.9.

1. A Whitney stratification of DL
Q is the single stratum

Sreg = DL
Q,

2. A Whitney stratification of DX
Q consists of the stratum

of smooth points Sreg and Si,j = DX
∞,i ∩DX

∞,j .

Proof. This is stated in Appendix C.5.

Proposition D.10. The Euler characteristics of the reduced
cohomology of the Milnor fibers of the points in Equa-
tion (86) are −1.

Proof. Near

Si,j = DX
∞,i ∩DX

∞,j , (87)

the functions x = xi

y2i
, y =

xj

y2j
form a coordinate frame of

LX
m, meaning the values of x, y determine a unique point of
LX
m. This translates to DX

Q being determined by the equa-
tion

u1x
2 + u2y

2 = u3x
2y2, (88)

for holomorphic locally non-vanishing functions u1, u2, u3
that we can read off from the homogenization of HQ in
Equation (63).

Next look at Gt = {x2 + y2 − x2y2 = t} ∩ Bϵ and the
map

ψ : Gt → {x+ y − xy = t} ∩Bϵ2 ,

(x, y) 7→ (x2, y2).
(89)

Denote by G′
t the set {x+ y−xy = t}∩Bϵ2 . Consider the

disjoint union

G′
t =(G′

t ∩ {x, y ̸= 0}) ∪ (G′
t ∩ {x = 0})

∪ (G′
t ∩ {y = 0}).

(90)

Note that G′
t is smooth at every point for small ϵ; the gra-

dient is (1 − x, 1 − y). Observe that G′
t ∩ {x = 0} and

G′
t ∩ {y = 0} are by construction single points. We have

that ψ is 4-to-1 on the first set and 2-to-1 on the second and
third of the disjoint union. This gives us

χ(Gt) = 4χ((G′
t ∩ {x, y ̸= 0})+

+ 2χ(G′
t ∩ {x = 0}) + 2χ(G′

t ∩ {y = 0})
= 4(1− 2) + 2 + 2 = 0.

(91)

We conclude that the reduced Milnor fiber is −1.



Proof of Theorem 1.7.
1. We use Theorem C.17 and Proposition D.9 to con-

clude that

χ(DL
Q) = χ(D′L). (92)

We get by Equations (53) and (54), and Lemmas D.1 to D.3
and Proposition D.7 that

χ(ML
m ∩ Uβ) = 2−m+ 0− 2m, (93)

which sums to 2 − 3m. Since dimML
m = 1, Theorem 1.7

says that EDD(ML
m) = 3m− 2.

2. Similarly, by Theorem C.17 and Proposition D.9, we
get

χ(D′X)− χ(DX
Q ) =µ0χ(Sreg \D′X)+

+
∑
i ̸=j

µi,jχ(Si,j \D′X), (94)

where µ0 and µi,j are defined as in Theorem C.17. It
is not hard to check that µ0. Observe that D′X does
not meet any singular points, for instance since the lin-
ear system Γ(LX

m,O(DX
Q )) is basepoint-free. Therefore

χ(Si,j \ D′X) = χ(Si,j) = 1. We get by Equations (53)
and (54), and Lemmas D.1 to D.3 and Propositions D.7
and D.10 that

χ(LX
m ∩ Uβ) = (3 +m)− (2m−

(
m

2

)
)+ (95)

+

(
m

2

)
− (−4m2 + 8m+

(
m

2

)
), (96)

which sums to 9
2m

2 − 19
2 m+3. Since dimLX

m = 2, Theo-
rem 1.7 says that EDD(LX

m) = 9
2m

2 − 19
2 m+ 3.

The following is now a direct consequence:

Corollary 1.8. Let C̃ and Ĉ be generic arrangements of car-
dinality m.

1. EDD(M1,1

C̃
) = 3m− 2.

2. If m ≥ 3, then EDD(M2,1

Ĉ
) = 9

2m
2 − 19

2 m+ 3.

Proof. Follows from Theorem 1.7 and Theorem B.4.

E. Pseudocodes
Finally, in the last section we provide the pseudocode

that lay the foundation for our numerical results. For each
of the plots presented in the main document, we iterate 1000
(or 100) times on each of the 5 different ways of reconstruc-
tion and then we plot the relative error and speed. Note that
each time we generate new random camera arrangements, a
line in R3 and p points on this line.

In the pseudocodes below, we present one iteration of
each method. The input is a randomly generated camera ar-
rangement C of 3× 4 matrices, a projective line L spanned
by two vectors of R4, and p points Xi ∈ R3 such that
[Xi; 1] lie on L. We use the notation that for a column vec-
tor X ∈ Rn, [X; 1] ∈ Rn+1 is the vector we get by adding
a 1 as the last coordinate. Let ι be the function that scales
a vector such that its last coordinate is 1, and then removes
that coordinate. When we write L′ : [L′; 1] ∈ Gr(1,P3),
we mean that L′ is a line spanned by two column vectors
l0, l1 such that the 2 × 2 lower minor of

[
l0 l1

]
is non-

zero. This corresponds to choosing an affine patch of the
Grassmannian of lines in P3.

In Algorithms 1 to 5 we use the standard approach for
simplicity, but we provide in Algorithm 6 the non-standard
approach for (L1).1 to emphasize the distinction.

Algorithm 1: Method (L1).0.
Input : C = (C1, . . . , Cm), X1, . . . , Xp

Output: The log of the average relative error
1 for j from 1 to m do
2 for i from 1 to p do
3 qi,j ← ι(Cj [Xi; 1]) + σ(ϵ);

4 Yi ← argmin
X∈R3

∑m
j=1(qi,j − ι(Cj [X; 1]))2;

5 e← log10

(
1
pϵ

∑p
i=1 ∥Yi −Xi∥

)
;

Return: e

Algorithm 2: Method (L1).1 std.
Input : C = (C1, . . . , Cm), L, X1, . . . , Xp

Output: The log of the average relative error
1 for j from 1 to m do
2 for i from 1 to p do
3 qi,j ← ι(Cj [Xi; 1]) + σ(ϵ);

4 uj ← ι(Cj · L) + σ(ϵ);

5 L0 ← nullspace
[
CT

1 [u1; 1] CT
2 [u2; 1]

]T
;

6 for i from 1 to p do
7 Yi ←

argmin
X∈R3:[X; 1]∈L0

∑m
j=1(qi,j − ι(Cj [X; 1]))2;

8 e← log10

(
1
pϵ

∑p
i=1 ∥Yi −Xi∥

)
;

Return: e
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