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Figure A.1. Augmentations for different particle sizes and trans-
parencies from Main Tab. 2 on an exemplary Sintel [1] frame.
Augmentations for particle count, motion blur and color are
shown in Fig. A.2, augmentation parameters are listed in Tab. A.1.

A. Additional Material for Experiments

We provide the code to generate the weather aug-
mentations and run all adversarial weather attacks at
https://github.com/cv-stuttgart/DistractingDownpour. The
tested optical flow networks utilize the respective author-
provided PyTorch implementations with Sintel-check-
points for FlowFormer [2], GMA [10], RAFT [10] and
FlowNetCRobust [9]. For FlowNet2 [3] and SpyNet [6] we
use the implementations from [7] and [5], respectively.

A.1. Weather augmentations: Configurations

In Tab. A.1 we give a full list of parameter configura-
tions for the particle effects from Main Tab. 2. In addition
to the weather visualizations in Main Fig. 4, we visualize
all Size-variations for particles in Fig. A.1, and all Particle
count, Motion blur and color variations in Fig. A.2. From
these figures it becomes clear that the configurations size:
small, motion blur: 0.0 and color: white all visually cor-
respond to snow. Therefore, they were not chosen as four
main weather effects. Instead, we selected configurations
that lead to more diverse visual appearance, even though
these configurations were not necessarily the most effective
ones to perturb the optical flow output in Main Tab. 2.

A.2. Adversarial weather attacks

A.2.1 Attack Configurations

With the provided code and the network implementations
above, Tab. A.2 lists the configurations for all weather at-
tacks that were used to create Tables 4, 5 and 6 from the
Main paper. To compare to PCFA [8] and I-FGSM [9], we
use the implementation from [8] and the author-provided
configurations for PCFA with ε2 = 5e-3, AEE loss, COV
constraint and disjoint, non-universal perturbations. For I-
FGSM we use a perturbation bound of ε∞ = 5e-3 and 25
optimization steps. Both attacks are run on Sintel train.

A.2.2 Additional configurations for training with snow

Regarding the configurations for the snow-augmented train-
ing in Sec. 4.3, Main Tab. 7 uses snow, rain, sparks and fog
augmentations as specified in Tab. A.1 and the respective
attack configurations that were used for Main Tab. 5, which
are listed in Tab. A.2.

A.2.3 Additional visualizations for weather attacks

Finally, in Figures A.3, A.4, A.5 and A.6 we provide addi-
tional visualizations for attacks with snow, rain, sparks and
fog. They complement Main Fig. 6, and provide visualiza-
tions for sample images from the attack runs in Main Tab. 5.
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Particle base properties Color properties Motion properties Motion blur

Weather Count Size d-decay Templates (R,G,B) (δH, δL, δS) Mode θ my δ∠m δ∥m∥ Blur Length Particles

Pa
rt

ic
le

s

1000 1000 71 9 particles (255,255,255) ( 0, 0.0, 0.0) additive 0.75 0.2 0.0 0 - 0.0 0
2000 2000 71 9 particles (255,255,255) ( 0, 0.0, 0.0) additive 0.75 0.2 0.0 0 - 0.0 0
3000 (snow) 3000 71 9 particles (255,255,255) ( 0, 0.0, 0.0) additive 0.75 0.2 0.0 0 - 0.0 0
4000 4000 71 9 particles (255,255,255) ( 0, 0.0, 0.0) additive 0.75 0.2 0.0 0 - 0.0 0
5000 5000 71 9 particles (255,255,255) ( 0, 0.0, 0.0) additive 0.75 0.2 0.0 0 - 0.0 0

grey 3000 71 9 particles (127,127,127) ( 0, 0.0, 0.0) Meshkin 0.75 0.2 0.0 0 - 0.0 0

M
ot

io
n

bl
ur 0.0 3000 71 9 particles (255,255,255) ( 0, 0.0, 0.0) additive 0.75 0.2 0.0 0 - 0.0 0

0.0375 3000 67 9 particles (255,255,255) ( 0, 0.0, 0.0) additive 0.75 0.2 0.1 4 ✓ 0.0375 20
0.075 3000 61 9 particles (255,255,255) ( 0, 0.0, 0.0) additive 0.75 0.2 0.1 4 ✓ 0.075 20
0.1125 3000 57 9 particles (255,255,255) ( 0, 0.0, 0.0) additive 0.75 0.2 0.1 4 ✓ 0.1125 20
0.15 (rain) 3000 51 9 particles (255,255,255) ( 0, 0.0, 0.0) additive 0.75 0.2 0.1 4 ✓ 0.15 20

C
ol

or
A

dd
iti

ve

white 3000 41 9 particles (255,255,255) ( 0, 0.0, 0.0) additive 1.5 -0.05 0.2 60 ✓ 0.3 10
red (sparks) 3000 41 9 particles (191, 79, 64) ( 15, 0.1, 0.1) additive 1.5 -0.05 0.2 60 ✓ 0.3 10
green 3000 41 9 particles ( 79,191, 64) ( 15, 0.1, 0.1) additive 1.5 -0.05 0.2 60 ✓ 0.3 10
blue 3000 41 9 particles ( 64, 79,191) ( 15, 0.1, 0.1) additive 1.5 -0.05 0.2 60 ✓ 0.3 10
color 3000 41 9 particles (205, 80, 80) (180, 0.1, 0.1) additive 1.5 -0.05 0.2 60 ✓ 0.3 10

α
-B

le
nd

in
g white 3000 41 9 particles (255,255,255) ( 0, 0.0, 0.0) Meshkin 1.5 -0.05 0.2 60 ✓ 0.3 10

red 3000 41 9 particles (191, 79, 64) ( 15, 0.1, 0.1) Meshkin 1.5 -0.05 0.2 60 ✓ 0.3 10
green 3000 41 9 particles ( 79,191, 64) ( 15, 0.1, 0.1) Meshkin 1.5 -0.05 0.2 60 ✓ 0.3 10
blue 3000 41 9 particles ( 64, 79,191) ( 15, 0.1, 0.1) Meshkin 1.5 -0.05 0.2 60 ✓ 0.3 10
color 3000 41 9 particles (205, 80, 80) (180, 0.1, 0.1) Meshkin 1.5 -0.05 0.2 60 ✓ 0.3 10

Si
ze

small 3000 71 9 dust (255,255,255) ( 0, 0.0, 0.0) Meshkin 1.0 0.0 0.0 0 - 0.0 0
medium 141 161 1.75 dust (255,255,255) ( 0, 0.0, 0.0) Meshkin 0.78 0.0 0.0 0 - 0.0 0
large 60 451 0.8 dust (255,255,255) ( 0, 0.0, 0.0) Meshkin 0.1 0.0 0.0 0 - 0.0 0
fog (fog) 60 451 0.8 dust (255,255,255) ( 0, 0.0, 0.0) Meshkin 0.25 0.0 0.0 0 - 0.0 0

Table A.1. Particle configurations for Sintel train dataset augmentations from Main Tab. 2. It additionally lists the grey particle configura-
tion used in Main Tab. 4. d-Decay is a depth-decay parameter that affects the size, δH, δL and δS are random color variations in the HLS
space around the initial RGB color configurations. While all effects use a depth-dependent transparency scaling, fog has a depth-constant
transparency of 0.3. The motion m is always along the y-axis (vertically, mx = mz = 0), and may vary by a random angle δ∠m or be
scaled by a random factor that scales with a fraction of ∥m∥. All configurations were created with 8 GPUs and a random seed of 0. To
train RAFT on another snow dataset than the test set (Main Tab. 7), the training set uses a random seed of 1234.

Tab. Dataset Augment. LR δp1 δp2 δγ δθ

Ta
bl

e
4

Sintel-tr115 grey 1e-5 ✓ - - -
Sintel-tr115 grey 1e-5 - ✓ - -
Sintel-tr115 grey 1e-3 - - ✓ -
Sintel-tr115 grey 1e-3 - - - ✓

Sintel-tr115 grey 1e-5 ✓ ✓ - -
Sintel-tr115 grey 1e-3 - - ✓ ✓

Sintel-tr115 grey 1e-5 ✓ ✓ ✓ ✓

Ta
bl

e
5 Sintel-tr115 snow 1e-5 ✓ ✓ ✓ ✓

Sintel-tr115 rain 1e-5 ✓ ✓ ✓ ✓

Sintel-tr115 sparks 1e-5 ✓ ✓ ✓ ✓

Sintel-tr115 fog 1e-5 ✓ - ✓ ✓

T.
6 Sintel train snow 1e-5 ✓ ✓ ✓ ✓

Table A.2. Weather attack configurations for the experiments from
Main Tables 4, 5 and 6. Augment specifies the augmentation, cf .
Tab. A.1, LR denotes the optimizer learning rate and the optimiza-
tion variables δp1 , δp2 , δγ and δθ indicate which of them were
optimized. Optimization with 750 steps of Adam using weights
α1 = α2 = 1000 for the loss function.
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Figure A.2. Augmentations for different particle count, motion blur and color from Main Tab. 2. on exemplary Sintel [1] frames. Aug-
mentations for particle sizes are shown in Fig. A.1, augmentation parameters are listed in Tab. A.1.
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Figure A.3. Snow. Qualitative results for 3000 snowflakes on images from the Sintel final dataset with random initialization and adversarial
optimization with optical flow predictions for FlowNet2 [3], FlowNetCRobust [9], SpyNet [6], RAFT [10], GMA [4] and FlowFormer [2],
as extension to Main Fig. 6. See also Figs. A.4, A.5 and A.6.
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Figure A.4. Rain. Qualitative results for 3000 rain streaks on images from the Sintel final dataset with random initialization and adversarial
optimization with optical flow predictions for FlowNet2 [3], FlowNetCRobust [9], SpyNet [6], RAFT [10], GMA [4] and FlowFormer [2]
as extension to Main Fig. 6. See also Figs. A.3, A.5 and A.6.
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Figure A.5. Sparks. Qualitative results for 3000 fire sparks on images from the Sintel final dataset with random initialization and adversarial
optimization with optical flow predictions for FlowNet2 [3], FlowNetCRobust [9], SpyNet [6], RAFT [10], GMA [4] and FlowFormer [2]
as extension to Main Fig. 6 and visualization of exemplary results from Main Tab. 5. See also Figs. A.3, A.4 and A.6.
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Figure A.6. Fog. Qualitative results for 60 fog clouds on images from the Sintel final dataset with random initialization and adversarial
optimization with optical flow predictions for FlowNet2 [3], FlowNetCRobust [9], SpyNet [6], RAFT [10], GMA [4] and FlowFormer [2],
as extension to Main Fig. 6. See also Figs. A.3, A.4 and A.5.


