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A. Comparison of OW-DFA with other Tasks

We summarize similarities and differences between OW-
DFA and related tasks in Table 1.

Comparison with GAN attribution. GAN attribu-
tion [34, 35, 33, 12] is a multi-classification task focusing on
attributing GAN models. A common strategy is to use the
fingerprints of different GAN models to attribute those gen-
erated images. However, they only consider the close-world
scenario where the training and test sets have the same cat-
egory distribution. Such an assumption is not applicable in
OW-DFA, since novel forgeries emerge greatly under open-
world scenarios.

Comparison with OW-GAN attribution. OW-GAN
attribution is a multi-classification task that focuses on at-
tributing GAN models and discovering unseen GANs in
an open-world scenario, which is proposed by Open-world
GAN [11]. Although some progress has been made in open-
world scenarios, the fingerprint assumption it relied on may
not hold in the fake faces generated by non-GAN methods.
Besides GAN methods, OW-DFA also covers other forgery
types, including identity swap and expression transfer, mak-
ing the task more realistic and challenging.

Comparison with Deepfake Detection. Deepfake de-
tection focuses on real/fake detection, and many related
works [25, 38] have been proposed in recent years. How-
ever, the generalization performance on novel attacks is still
limited. As fake faces become visually realistic and need to
be interpreted in legal proceedings, OW-DFA extends the
binary detection task to a multi-classification task for en-
hancing the interpretability of deepfake detection. At the
same time, the additional provision of unlabeled novel at-
tack data also provides a higher possibility for further im-
provement of generalizability.

*Equal contribution. This work was done when Zhimin Sun was a re-
search intern at Tencent YouTu Lab.
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B. Pre-processing Details of Datasets
We present the five datasets that are used in our OW-

DFA benchmark and describe the detail of data processing
for each dataset.

• FaceForensics++ [27] is the most widely used dataset
for deepfake detection tasks, consisting of 1,000 orig-
inal video sequences that have been manipulated with
4 face manipulation methods, including Deepfakes,
Face2Face, FaceSwap, and NeuralTextures. As part
of the data for OW-DFA, we include both real and fake
images from FF++. We sample 20 frames for each ma-
nipulated video and 200 frames for each original video.
After that, we use dlib to crop out the faces from those
frames and save them as new images.

• CelebDF [23] is a challenging dataset for deepfake de-
tection. It consists of 590 celebrity videos (Celeb-real)
and 300 additional videos (YouTube-real) downloaded
from YouTube, as well as 5,639 high-quality synthe-
sized videos. The inclusion of real celebrity videos
in CelebDF makes it suitable for evaluating the OW-
DFA benchmark under Protocol-2, which requires dis-
tinguishing between real and fake images from differ-
ent sources. We sample 100 frames for each Celeb-real
video and use dlib to crop the faces at the same time.

• ForgeryNet [15] is the largest publicly available
multi-purpose deep face forgery analysis benchmark
dataset. It contains 2.9 million images and 15 forgery
methods. Due to its large scale and diverse range of
attack types, ForgeryNet is the most suitable dataset
for deepfake attribution tasks. A significant portion of
the data in the OW-DFA benchmark is obtained from
ForgeryNet. For each forgery method in Protocol-1,
we extract 20,000 frames and apply dlib to ensure data
consistency.

• DFFD [10] is a diverse deepfake face dataset that con-
tains 600,000 face images. Of these images, 500,000

1



Table 1. Relationship between our novel OW-DFA and related tasks.

Task Task Goal Data Type Known Classes Novel Classes

Deepfake Detection Classification of real/fake faces Deepfake ✓ -
GAN Attribution Classification of GAN images GAN-generated ✓ -
Open-world GAN Attribution Classification of GAN images GAN-generated ✓ ✓
Open-world Semi-Supervised Learning Classification of object Various object images ✓ ✓
Open-world DeepFake Attribution Classification of deepfake faces Deepfake ✓ ✓

Table 2. List of forgery methods and corresponding train/test splits
used in Protocol-1 and Protocol-2. Note that some train images
are unlabeled.

Face Type Source Dataset Method # of Train # of Test

Identity Swap

FaceForensics++ FaceSwap 1200 300
Deepfakes 1600 400

ForgeryNet
FaceShifter 1200 300

DeepFaceLab 1600 400
FSGAN 1200 300

Expression Transfer

FaceForensics++ Face2Face 1600 400
NeuralTextures 1200 300

ForgeryNet
Talking-Head-Video 1200 300

ATVG-Net 1200 300
FOMM 1600 400

Attribute Manipulation
ForgeryNet

MaskGAN 1600 400
StarGAN2 1200 300

SC-FEGAN 1200 300

DFFD FaceAPP 1600 400
StarGAN 1200 300

Entire Face Syncthesis

ForgeryNet StyleGAN2 1200 300

DFFD PGGAN 1200 300
StyleGAN 1600 400

ForgeryNIR CycleGAN 1600 400
StyleGAN2 1200 300

Real Face FaceForensics++ Youtube-Real 16000 4000

CelebDFv2 Celeb-Real 4000 1000

are synthetic or manipulated and 100,000 are real.
The images originate from various publicly accessi-
ble datasets and are synthesized or manipulated using
publicly accessible methods. Owing to its diversity of
attack types and inclusion of data on attribute manipu-
lation and entire face synthesis, DFFD is incorporated
into the OW-DFA benchmark. For FaceAPP and GAN
generation attacks, we randomly select 20,000 images
for each method.

• ForgeryNIR [32] is a near-infrared face forgery and
detection dataset that contains over 50,000 real and
fake identities. It also includes various perturbations
to simulate real-world scenarios. Since the fake im-
ages in ForgeryNIR are generated using multiple GAN
techniques, we randomly select 20,000 images for both
CycleGAN and StyleGAN2 and include them in OW-
DFA.

Train and test splits. We download all datasets from
the official links. We select images according to Protocol-1
(20 manipulation methods) and Protocol-2 (20 manipula-
tion methods and 2 real face types). Then, we randomly
sample images according to the corresponding number of

each forgery attack method. Train and test sets are split
based on the ratio of 4 : 1. Table 2 summarizes the class-
wise train and test splits used in Protocol-1 and Protocol-
2. Note that some train images are unlabeled. Protocol-1
covers 20 forgery methods and includes a total of 272,000
training images and 68,000 test images. Protocol-2 covers
both 2 real face and 20 forgery methods and includes a total
of 472,000 training images and 118,000 test images.

C. Implementation for Multi-stage Paradigm
To further improve the performance of the OW-DFA

task, we extend CPL to a multi-stage paradigm with a pre-
training technique and iterative learning. Here we also pro-
vide the specific implementation details of different stages.

• Stage-1 aims to pre-train on the labeled dataset to im-
prove the performance on known attacks. Specifically,
we conduct supervised training based on the labeled
data in OW-DFA using Eq. 11 in the main text as
the loss function with a learning rate of 2e−4 for 20
epochs. After completing Stage-1 training, we obtain
a weight that performs well on known attacks and can
be used as the pretrained weight for Stage-2.

• Stage-2 aims to leverage the unlabeled data to enhance
the robustness and generalization of the model. We
initialize the model with the pretrained weights from
Stage-1 and apply CPL on both labeled and unlabeled
sets in a semi-supervised manner. We use Eq. 13 in
the main text as the loss function with a learning rate
of 2e−4 for 50 epochs. We also ensure a strict half-
sampling of labeled and unlabeled data in a batch,
maintaining a balanced ratio of the two types of data
during training.

• Stage-3 aims to exploit the clustering structure of the
feature space and assign more accurate labels to the
unlabeled data. We leverage the Semi-Supervised k-
means algorithm [30] and iterative learning to fur-
ther refine the pseudo-labels and fine-tune the model.
We first extract features of all training samples, both
labeled and unlabeled, with the feature extractor in
Stage-2. Next, we set up initial clustering centers with
10 samples by K-Means++. Then, Semi-Supervised
k-means (refer to Figure 4 in [30]) will be repeated



for at most 100 iteration times until the k-means algo-
rithm converges with a tolerance of 1e−4. After ob-
taining pseudo-labels with assigned clusters, we fur-
ther fine-tune our models using Eq. 11 in the main text
as the loss function with a learning rate of 2e−4 for 20
epochs.

D. Implementation for Comparison Methods
Our baseline comparison includes a total of 8 methods,

comprising GAN attribution and OW-SSL methods. To en-
sure a fair comparison between methods, we use the actual
number of categories as the output head number for the clas-
sifier. We exclude strong and weak augmentation strategies
due to their inapplicability to the OW-DFA task. All meth-
ods use ResNet50 pre-trained on ImageNet as the feature
extractor. It is trained with a learning rate of 2e−4 for 50
epochs and a batch size of 128.

• Lower bound is established using supervised learn-
ing on labeled data. Since this experiment applies to a
closed-world setting, we obtain the output result based
on its original classifier and evaluate its performance
directly.

• Upper bound is established using supervised learning
on all data, including both labeled and unlabeled data.
Since this experiment is trained with all types of sam-
ples exposed, its performance must be optimal.

• DNA-Det [33] is a closed-set approach that attributes
GAN-generated images based on GAN fingerprints.
We include classification loss, contrastive loss, and au-
tomatic weighted loss with default configurations.

• Open-World GAN [11] is an approach that discov-
ers and attributes GAN-generated images based on an
open-world setting. We config the class lists of both
protocols and repeat iteration for 4 times according to
the default configuration. We extend evaluation to an
additional test set and report results on this extra set.

• RankStats [14] is a novel class discovery method that
can be extended to solve OW-SSL tasks by exploring
Top-K ranked dimensions of features. Sample pairs
can be pulled or pushed based on their similarity. We
use the default setting of K = 5 as the number of
ranked dimensions.

• ORCA [6] is the first approach to propose the task of
OW-SSL and uses cosine distance as a similarity ma-
trix to bring pairs with high similarity closer together.
We reproduce ORCA with both a fixed negative mar-
gin and a dynamic margin and report the best result
with a fixed negative margin of m = −0.2.

• OpenLDN [26] uses a bi-level optimization rule to en-
hance feature representation and applies close-world
iterative training to improve performance. However,
we only evaluate its performance using its semi-
supervised feature learning component. We change the
backbone to ResNet50 while keeping the configuration
of simnet unchanged, and use 0.5 as the default thresh-
old for pseudo-label assignment.

• NACH [13] is a recently introduced approach that im-
proves ORCA’s performance by filtering out erroneous
samples and synchronizing the learning pace between
seen and unseen classes. We use the default setting of
K = 2 as the index for the labeled sample when filter-
ing pairs.

E. Implementation for Experiments
Due to space limitations in the main text, we have omit-

ted some experimental details. In this section, we provide
additional explanations for the specific implementation of
those experiments.

Implementation Details of the GLVM ablation study.
To fairly compare the strengths and weaknesses of different
methods in similarity learning, we compare the accuracy
of similarity pair matching at various training stages. We
use the ground truth of unlabeled samples to distinguish be-
tween known and novel classes. To visually represent this
selection process, we calculate the accuracy of sample pair-
ing and present it as a line chart. Further validation results
for each forgery method can be found in Figure 2.

Implementation Details of the PPLM ablation study.
To ensure an equitable comparison between methods, we
exclude strong and weak augmentation strategies due to
their inapplicability to the OW-DFA task. Since the pseudo-
label strategy relies on prior similarity learning, we use the
GLV loss constraint as a baseline to ensure that the feature
extractor and classifier have some ability to classify novel
classes. In our comparison of all methods, we uniformly
use a weight of 0.5 for the pseudo-label cross-entropy loss.
Directly assigning labels refers to the strategy of choosing
the prediction with the highest output value as the label. For
the fixed-threshold approach, we use a threshold of 0.95 for
both known and novel classes and only assign labels to pre-
dictions that exceed this threshold. For dynamic-threshold
approaches [36, 31], we reproduce them using their open-
source code and default configuration. For ST Gumbel Soft-
max, we directly use the output of Gumbel Softmax as the
label with a default temperature of τ = 1.

Implementation Details of Real/Fake Detection. To
verify the importance of deepfake attribution for deepfake
detection, we compare the performance of the deepfake de-
tection task based on Protocol-2. We compare the results



Table 3. List of methods and corresponding datasets utilized in OW-DFA with 5× scale.

Face Type Labeled Sets Unlabeled Sets Source Dataset Method Tag Labeled # Unlabeled #

Identity Swap Deepfakes [2]
DeepFaceLab [1]

Deepfakes
DeepFaceLab
FaceSwap [4]
FaceShifter [22]
FSGAN [24]

FaceForensics++ [27] Deepfakes Known 7500 2500
FaceSwap Novel - 7500

ForgeryNet [15]
DeepFaceLab Known 7500 2500
FaceShifter Novel - 7500

FSGAN Novel - 7500

Expression Transfer Face2Face [29]
FOMM [28]

Face2Face
FOMM
NeuralTextures [5]
Talking-Head-Video [37]
ATVG-Net [7]

FaceForensics++ Face2Face Known 7500 2500
NeuralTextures Novel - 7500

ForgeryNet
FOMM Known 7500 2500

ATVG-Net Novel - 7500
Talking-Head-Video Novel - 7500

Attribute Manipulation MaskGAN [21]
FaceAPP [3]

MaskGAN
FaceAPP
StarGAN2 [9]
SC-FEGAN [16]
StarGAN [8]

ForgeryNet
MaskGAN Known 7500 2500
StarGAN2 Novel - 7500

SC-FEGAN Novel - 7500

DFFD [10] FaceAPP Known 7500 2500
StarGAN Novel - 7500

Entire Face Synthesis StyleGAN [18]
CycleGAN [39]

StyleGAN
CycleGAN
PGGAN [17]
StyleGAN2 [19]

ForgeryNet StyleGAN2 Novel - 7500

DFFD StyleGAN Known 7500 2500
PGGAN Novel - 7500

ForgeryNIR [32] CycleGAN Known 7500 2500
StyleGAN2 Novel - 7500

Real Face Youtube-Real [27] Celeb-Real [23]
FaceForensics++ Youtube-Real Known 75000 25000

CelebDFv2 [23] Celeb-Real Novel - 25000

Table 4. Benchmark Evaluation on Protocol-1 and Protocol-2 with dataset of 5× scale.

Method
Protocol-1: Fake Protocol-2: Real & Fake

Known Novel All Known Novel All

ACC ACC NMI ARI ACC NMI ARI ACC ACC NMI ARI ACC NMI ARI

Lower Bound 99.68 40.86 47.55 26.33 46.91 63.43 37.33 99.84 34.57 42.98 19.37 61.46 66.05 62.16
Upper Bound 98.93 96.99 94.18 94.94 97.91 95.87 95.91 99.27 97.12 94.89 96.78 98.43 96.48 98.27
RankStats [14] 99.17 62.05 64.60 52.87 79.52 78.87 72.90 98.86 51.19 57.56 37.56 78.25 77.37 88.07
ORCA [6] 98.30 73.61 70.20 63.50 85.23 83.99 80.86 97.09 62.10 64.96 49.15 83.44 82.68 88.64
OpenLDN [26] 98.78 54.12 57.54 45.43 72.90 77.22 70.03 97.03 48.26 52.77 33.72 73.97 75.13 84.37
NACH [13] 98.34 73.43 71.61 65.33 85.16 84.90 82.31 97.28 69.39 70.03 54.28 86.47 84.76 90.09
CPL 98.68 75.21 73.19 65.71 86.25 85.58 82.35 97.45 69.57 70.67 54.67 86.51 85.44 90.30

Table 5. Ablation study of patch division on Protocol-1.

Patch Known Novel All

ACC ACC NMI ARI ACC NMI ARI

3× 3 97.50 71.89 68.20 59.37 83.70 82.31 77.64
5× 5 96.80 69.66 66.35 55.25 82.41 81.20 75.56
7× 7 96.68 67.13 64.70 52.88 81.12 80.93 75.15

of three approaches: a) Deepfake binary classification, b)
Deepfake multi-classification, and c) CPL framework. a)
Deepfake binary classification is trained on the labeled set
and outputs 0/1 to represent fake/real. When testing, we di-
rectly evaluate the performance based on the AUC result.
b) Deepfake multi-classification is trained on the labeled
set with 9 classifier outputs representing 1 real face and 8

forgery methods. Since there is only one real face type,
we directly evaluate the AUC results using predicted output
when testing. c) The CPL framework is trained on both
labeled and unlabeled sets using semi-supervised learning
with 22 classifier outputs representing 2 real faces and 20
forgery methods. Since multiple real face types appear, we
first acquire the mapping relationship between prediction
results and ground truth labels using the Hungarian algo-
rithm [20]. Then during testing, we sum up all prediction
results for real faces to evaluate AUC results.

F. Additional Experiments

Ablation Study on Scale of Dataset. To assess the scal-
ability of each method further, we conduct an additional ex-
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Figure 1. Study of the relation between the performance of different methods and the scale of the dataset.
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Figure 2. This confusion matrix displays the correct ratio of sample pairing using (a) GR loss and (b) GLV loss. The X-axis represents the
actual forgery method, while the Y-axis represents the predicted forgery method.

periment to evaluate the performance of different methods
on datasets of varying sizes. Due to the limited performance
of DNA-Det [33] and Openworld-GAN[11] in the OW-DFA
task, we exclude these two methods from this experiment.
Specifically, based on our original dataset, we scale up both
Train and Test set to 2×∼5× their original size. The results
of the ablation study are shown in Figure 1. As expected,
the performance of each method improves to some extent
as the size of the dataset increases. However, our proposed
method CPL consistently achieves the best results across
all dataset sizes. We provide the specific settings for the 5×
scale of dataset in Table 3, and the corresponding evaluation
results are presented in Table 4.

Confusion Matrix for Different Forgery Methods. We
record the predicted result and actual label of samples dur-
ing similarity learning to analyze factors that contribute to
ineffective classification. We present this information using
a confusion matrix in Figure 2. To focus on categories with
high confusion, we filter out all categories with prediction

accuracy >90% and only include methods with low classi-
fication results. The method with GLR loss constraint can
reduce confusion between similar categories while obtain-
ing more accurate predictions. It has an accuracy of >50%
on all categories. However, some samples are still confused
with each other, especially when a) their data source is the
same, such as StarGAN2, FaceShifter, and StyleGAN2, or
when b) they belong to the same forgery type, including the
confusion of NeuralTextures and Talking-Head-Video, and
that of FaceShifter and FSGAN.

Ablation Study on Patch Division. To compare the per-
formance of different patch sizes and evaluate their impact
on overall performance, we conduct an ablation study on
patch division. Table 5 presents the results of the ablation
study, which show that the optimal performance is achieved
with a smaller number of patch splits of 3× 3. Specifically,
we observe that using a smaller grid for local region parti-
tioning can alleviate the problem of the same forged region
being sliced into different local patches.
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