
Neural-PBIR Reconstruction of Shape, Material, and Illumination
—Supplementary Material—

1. Technical Details
In what follows, we elaborate technical details of our

Neural-PBIR pipeline’s three main stages. Code will be re-
leased upon internal approval for future extension and re-
production.

1.1. Neural Surface Reconstruction

Sharpness term in unbiased volume rendering. Fol-
lowing NeuS [7], we use a scaled sigmoid σs function in
the SDF for alpha activation:

αi = max

(
0,

σs(S(xi))− σs(S(xi+1))

σs(S(xi))

)
, (1)

where:

• S is the signed-distance function;

• σs(y) = (1 + exp(−sy))−1 with s > 0 being the sharp-
ness term;

• {xi = o + tiv}Ni=1 (with 0 < t1 < t2 < . . . < tN ) are
the N sampled points on the camera ray originated at the
camera’s location o with viewing direction v.

Specifically, we start with s = 30 if foreground masks
are provided (e.g., for the synthetic and DTU datasets)
and s = 5 otherwise (e.g. for our measured real-world
dataset). In practice, we use a scheduled sharpness s (in-
stead of updating s with gradient descent) as we find it
more stable. Then, we update the sharpness s by setting
s← min(s+ 0.02, 300) after each iteration.

Background modeling. As stated in Sec. 3.1 of the main
paper, we use two sets of V (sdf) and V (feat) grids to model
the foreground and the background (via Eq. (3) in the main
paper), respectively. Specifically, the foreground region
is defined as the volume inside a (predetermined) small
bounding box. The background, on the other hand, is the
volume inside a much larger bounding box.1 Given a cam-
era ray, we categorize the sample points {xi = o+ tiv}Ni=1

1In practice, we use background bounding boxes that are 16× as large
as the foreground ones.

along the ray as foreground or background and then evalu-
ate signed distance S(xi) and radiance Lo(xi,−v) for each
xi using the corresponding grids.

Thanks to the background scene volume, our method can
work without external mask supervision (e.g., our own real-
world dataset).

Points sampling on rays. When sampling 3D points
{xi = o + tiv}Ni=1 along a camera ray, we use ti = i∆t
with ∆t being half the size of a grid voxel for all i =
1, 2, . . . , N .

Coarse-to-fine optimization. For better efficiency and
more coherent results, when optimizing the V (sdf) and
V (feat) grids, we leverage a coarse-to-fine scheme by dou-
bling the number of voxels every 1k iterations for the first
10k iterations. The final voxel resolutions are 3003 for the
foreground grids (which contain the object of interest) and
1603 for the background ones.

Optimization details. We optimizing the V (sdf) and
V (feat) grids for the foreground and the background jointly
using the Adam [5] method with β = (0.9, 0.99) and
ϵ = 10−12 in 20k iterations. When computing the loss,
we use weights wlap = 10−8 and wpp rgb = 0.01. Also,
when using the running means to update the threshold t in
the adaptive Huber loss, we set the momentum to 0.99 and
clamp t to a minimum of 0.01.

When training the SDF grids V (sdf), we use an initial
learning rate of 0.01 that then decays to 0.001 at 10k itera-
tions. When training the outgoing radiance field Lo, we use
a learning rate of 0.001 for the MLPs and 0.1 for the feature
grids V (feat).

1.2. Neural Distillation of Material and Lighting

Initialization. We initialize the roughnesses to Mr[v] =
0.25 for each vertex v. For per-vertex albedo, we initial-
ize Ma[v] to the median of the outgoing radiance from the



Figure 1: Examples of the averaged background obser-
vation. The black region indicates missing observation.

teacher model Lo:

Ma[v] = Median
{
Lo(x[v],ωo) |
ωo ∈ Ω, (ωo ·Mn[v]) > 0

}
, (2)

where x[v] and Mn[v] indicate, respectively, the position
and the normal of vertex v, and Ω is the predetermined set
of outgoing directions.

Fresnel term. In addition to albedo and roughness, we
also need the Fresnel term F0 [4] to model specular re-
flection. Following MII, we assume the object to be re-
constructed is dielectric and make F0 constant. We set
F0 = 0.02 for all synthetic data since it is used by MII’s
open-source implementation, and F0 = 0.04 for real-world
data since it is the industrial standard.

Averaged background constraint. Recap that we regu-
larize our SG-based illumination LSG

env to be similar to the
averaged background observation (LSG

env)
′. We now detail

how the latter is obtained.
First, we gather all “background” training pixels (to-

ward which the camera rays miss our reconstructed mesh).
Then, we compute (LSG

env)
′ as an environment map under the

latitude-and-longitude representation as follows. For each
background pixel with intensity I and viewing direction v,
we set the value of the corresponding pixel j in the envi-
ronment map (LSG

env)
′—based on latitude and longitude co-

ordinates of v—as (LSG
env)

′[j] = I . When multiple pixels
(from different camera locations) contribute to one pixel j
of (LSG

env)
′, we set (LSG

env)
′[j] using the average intensity of

all such pixels.
We show some examples of the averaged background ob-

servations (LSG
env)

′ in Fig. 1. We only compute the regular-
ization loss for the observed viewing directions.

Optimization details. To optimize per-vertex appear-
ance parameters, we use the Adam method with β =
(0.9, 0.999) and ε = 10−8 in 2k iterations. When comput-
ing losses, we use the weights wv reg = 0.1 and wbg = 10.
We use a learning rate 0.01 for per-vertex attributes and
0.001 for the spherical Gaussian (SG) parameters (repre-
senting the illumination LSG

env).

1.3. Physics-Based Inverse Rendering

Optimization details. Initialized using the mesh M0

predicted by the surface reconstruction stage as well as
albedo/roughness maps T (0)

a , T (0)
r (for surface reflectance)

and SG-based illumination LSG
env produced by the neural dis-

tillation stage, our physics-based inverse rendering (PBIR)
stage involves the following three steps:

1. We jointly optimize (using 1k iterations) the
albedo/roughness maps Ta, Tr and the SG parame-
ters LSG

env while keeping the mesh geometry fixed.

2. We first pixelize the SG-based LSG
env into an environment

map Lenv and then perform joint per-pixel optimizations
(using 1k iterations) for the albedo, roughness, and envi-
ronment maps Ta, Tr, and Lenv.

3. We jointly optimize (using 500 iterations) all maps and
the mesh geometry (per-vertex).

In practice, when optimizing albedo and roughness maps Ta

and Tr in all three steps, we use the Adam optimizer with
β = (0.9, 0.999), ε = 10−8, and the learning rates 10−2 for
Ta and 5 × 10−3 for Tr. When computing losses, we use
wmask ≈ 10 and wreg ≈ 0.1 (which we slightly adjust for
each example).

Additionally, in the first step, we use the Adam opti-
mizer [5] for the SG parameters with β = (0.9, 0.999),
ε = 10−8, and learning rates around 0.001 (which we
slightly adjust per example). In the second step, to suppress
the impact of Monte Carlo noises during environment map
optimization, we utilize the AdamUniform optimizer [6]
with λ = 1 and a learning rate of 0.01. In the last step, when
optimizing the mesh geometry, we again use the AdamU-
niform optimizer with λ = 100.

2. Additional Results and Evaluations
2.1. Additional Results

Video for view synthesis and relighting. Since results
of novel-view synthesis and relighting are best viewed an-
imated, we encourage readers to see our supplementary
video (video.mp4) for a more convincing comparison on
our five real-world objects.

Similar to the results shown in Fig. 6 of the main paper,
our method significantly outperforms nvdiffrec- mc [2] and
MII [8]. nvdiffrec- mc’s geometry and material reconstruc-
tions contain heavy artifacts. Despite nvdiffrec- mc show-
ing better novel-view results than MII (main paper’s Fig. 4),
the artifacts become visually prominent under novel illumi-
nations as can be seen in the video and main paper’s Fig. 6.
MII offers better overall albedo than nvdiffrec- mc but suf-
fer from over-blurring in both geometry and material recon-
structions. Overall, our results show significant better qual-
ity in both geometry and material.



Outdoor illumination. The five real-world objects pre-
sented the main paper are captured under indoor lighting.
In Fig. 2, we showcase the results of two of these objects
re-captured under outdoor illumination. Same as the re-
sults under indoor lighting, our reconstructions are more
detailed, allowing their rerenderings (under novel views) to
achieve better PSNR and SSIM.

Synthetic MII dataset. The authors of MII have kindly
shared their rendered results for us to compare. As their
evaluation scripts are unavailable, we use our own imple-
mentation for all the quantitative results. Due to the differ-
ent implementation of the evaluation metrics, MII’s quan-
titative results presented in our main paper differ slightly
from those reported in their paper.

In Figs. 3 to 6, we show more qualitative results on
the synthetic MII dataset. Overall, our method offers more
detailed albedo reconstructions than the baseline methods.
On the other hand, none of the methods performs well on
roughness estimation—likely due to the lack of robust pri-
ors. The qualitative results are consistent with the quantita-
tive comparison in Tab. 1 of the main paper.

Our synthetic dataset. Since the MII dataset does not
contain groundtruth meshes, it is difficult to evaluate the
accuracy of reconstructed shapes. To address this, we
create two extra synthetic scenes—buddha and lion—with
groundtruth meshes for evaluation. For each scene, the
training set includes 190 posed images with masks. The
testing set consists of visualizations of groundtruth albedo,
roughness, and renderings of the object under seven novel
lighting conditions in 10 poses.

Table 1 shows quantitative comparisons between our
method and the baselines. In addition to metrics used in
the MII dataset, we also measure Chamfer distances [1]
between optimized and groundtruth shapes (normalized so
that the groundtruth has unit bounding boxes). Our method
again outperforms the baselines.

As shown in Figs. 7 and 8, since the background is fully
visible (i.e., each pixel of Lenv is visible as the background
of at least one input image), our method is capable of recon-
structing the environment map almost perfectly. Because
of this, our albedo reconstructions are not hindered by the
albedo-light ambiguity—as demonstrated in Tab. 1 where
the error metrics barely change with or without albedo
alignment. We note that this might not apply to all scenar-
ios, for instance, the background might not be fully visible,
as shown in the MII dataset. Reconstructing indoor light-
ing perfectly is also challenging even if the background is
completely visible, because it breaks the assumption of en-
vironmental (i.e., distant) lighting.

2.2. Additional Evaluations

Surface quality on the DTU dataset. We show quan-
titative results breakdown for the 15 scenes from DTU
dataset [3] in Tab. 2. We use the official evaluation script
to measure Chamfer distances. Please note that our re-
sults evaluated here are directly from the shape reconstruc-
tion stage. We skip evaluating the shape refinement of our
physics-based inverse rendering on DTU dataset as DTU
exhibit vary light occlusion from robot arms.

Usefulness of shape refinement. Lastly, we demonstrate
the usefulness of our shape refinement (as the last step of the
physics-based inverse rendering stage) via an ablation. As
shown in Fig. 9 and Tab. 1, our shape refinement improves
the accuracy of reconstructed object geometries.
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Figure 2: Novel-view interpolation on our additional two real outdoor data. We report the average PSNR↑ and SSIM↑
below each image. The results show that our method achieves good quality and outperforms previous arts under outdoor
lighting as well.

Speed Relighting Aligned albedo Albedo Rough. Shape

Method Time↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ CD↓
nvdiffrec-mc [2] ∼ 2 h 21.77 0.936 0.071 33.29 0.964 0.037 16.14 0.910 0.068 0.013 9.42e-5
MII [8] ∼ 10 h 24.94 0.952 0.051 30.92 0.962 0.044 19.80 0.923 0.065 0.003 5.92e-5

Ours - Distilled only < 15 m 33.90 0.976 0.034 34.09 0.971 0.034 34.09 0.972 0.034 0.005 2.61e-5
Ours - w/o shape ref. ∼ 45 m 34.18 0.980 0.028 35.57 0.983 0.026 35.57 0.983 0.026 0.003 2.61e-5
Ours - Full ∼ 1 h 35.30 0.982 0.026 37.69 0.985 0.023 37.68 0.985 0.023 0.002 2.56e-5

Table 1: Relighting, material reconstruction, and mesh quality on our synthetic dataset. We compare our method with
MII and nvdiffrec-mc. The highest performing number is presented in bold, while the second best is underscored. We
measure the shape quality using Chamfer distances (CD).
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Figure 3: Qualitative comparisons of air balloons from the MII dataset.
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Figure 4: Qualitative comparisons of chair from the MII dataset.
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Figure 5: Qualitative comparisons of hotdog from the MII dataset.
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Figure 6: Qualitative comparisons of jugs from the MII dataset.
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Figure 7: Qualitative comparisons of buddha from our dataset.
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Figure 8: Qualitative comparisons of lion from our dataset.



Method Time avg. 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122
COLMAP 1 h 1.36 0.81 2.05 0.73 1.22 1.79 1.58 1.02 3.05 1.40 2.05 1.00 1.32 0.49 0.78 1.17
NeuS 5.5 h 0.77 0.83 0.98 0.56 0.37 1.13 0.59 0.60 1.45 0.95 0.78 0.52 1.43 0.36 0.45 0.45
Ours 5 m 0.66 0.52 0.72 0.36 0.35 0.97 0.68 0.61 1.27 1.06 0.71 0.52 0.78 0.36 0.43 0.56

NeuS Ours NeuS Ours

Table 2: Quantitative results breakdown and visualization on the DTU MVS dataset [3]. We use official evaluation
script to measure Chamfer distances (in mm). Our results are typically smoother with some details missing. We do not apply
PBIR shape refinement as DTU exhibits significant lighting variation. See Fig. 9 and the main paper for the experiments
about shape refinement.
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Figure 9: Usefulness of our shape refinement in the physics-based inverse rendering (PBIR) stage. To showcase the
effectiveness of our shape refinement, we employ the buddha scene and present zoom-in renderings along with Chamfer
distance visualizations where darker colors indicate higher errors. Additionally, we report the PSNR for relighting and the
Chamfer distance, presented at the bottom of our results.




