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Supplementary Note 1. Video Compressive Sensing
In this supplementary note, we provide the psuedocode that describes the emulation of two- and multi-bucket cameras and

mathematically describe their multiplexing masks. We also specify algorithmic details for video recovery from compressive
measurements.

Multi-Bucket Capture Pseudocode

Algorithm 1 describes the emulation of J-bucket captures, denoted as Ijcoded(x), from the photon-cube Bt(x) using mul-
tiplexing codes Cj

t (x), where 1 ≤ j ≤ J . Both single compressive snapshots (or one-bucket captures) and two-bucket
captures can be emulated as special cases of Algorithm 1, with J = 1 and J = 2 respectively.

Algorithm 1 Multi-Bucket Capture Emulation

Require: Photon-cube Bt(x)
Number of buckets J
Multiplexing code for jth bucket, 1 ≤ j ≤ J , Cj

t (x)
Pixel locations X
Total bit-planes T

Ensure: Multiplexed captures Ijcoded(x)

function MULTIBUCKETEMULATION(Bt(x), C
j
t (x))

Y j(x)← 0, ∀ j
for x ∈ X , 1 ≤ j ≤ J do

for 1 ≤ t ≤ T do
Ijcoded(x)← Ijcoded(x) +Bt(x) · Cj

t (x)
end for

end for
return Ijcoded(x)
end function

Mask sequences for video compressive sensing. For a single compressive capture (J = 1), a sequence of binary random
is used, i.e, C1

t (x) = 1 with probability 0.5. For a two bucket capture, we use

C2
t (x) = 1− C1

t (x),

which is the complementary mask sequence. For J > 2, at each timestep t and pixel location x, the active bucket is chosen
at random:

Cj
t (x)← 1, j ∼ Uniform(1, J).
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This is a direct generalization of the masking used for both one- and two-bucket captures.

Decoding Video Compressive Captures

A variety of decoding algorithms have been developed for video compressive sensing, including: (a) optimization frame-
works tailored to the forward model of Eq. (4) and with additional regularization [10, 24], (b) end-to-end deep-learning
methods that utilize a large corpus of training data [7, 9, 14, 22, 23], and (c) hybrid, plug-and-play (PnP) approaches that
utilize an optimization framework but perform one or more steps using a deep denoiser [5, 20, 26]. We opt to use the PnP
approach featuring an ADMM formulation [25] and a deep video denoiser (FastDVDNet [16]) in this work. We justify our
choice by noting that PnP-ADMM can produce high-quality reconstructions, comparable to end-to-end counterparts, while
using an off-the-shelf denoiser—precluding the need to train separate models for various masking strategies.

For computational efficiency, PnP-ADMM requires the gram matrix of the resulting linear forward model of Eq. (4) to be
efficiently invertible. The multi-bucket scheme described above adheres to this consideration.

Constant-Bandwidth Comparison

We now present a comparison of single-, two- and multi-bucket compressive captures when the readout rate is fixed. As
Suppl. Fig. 1 shows, multi-bucket captures provide higher fidelity reconstructions even when bandwidth is fixed. Further-
more, their bandwidth cost can be amortized, to some extent, by coding only dynamic regions—we describe this next.

Conventional capture

One-bucket recons. Two-bucket recons. Four-bucket recons. Eight-bucket recons.

200 Hz to 2000 FPS 100 Hz to 2000 FPS 50 Hz to 2000 FPS 25 Hz to 2000 FPS

Supplementary Figure 1: Fixed readout comparison of compressive video schemes. We compare video reconstruction
obtained from a single compressive snapshot, two-bucket capture, four-bucket capture and eight-bucket capture while holding
readout constant—we achieve this by commesurately increasing readout, for instance, by reading out single compressive
snapshots at 200 Hz. We indicate the readout rate here in Hertz (Hz) and the frame-rate of the reconstructed video in FPS.
Clearly, multi-bucket captures provide better reconstruction results than a burst of independently multiplexed captures.

Coding Only Dynamic Regions: Mitigating the Bandwidth Cost of Multi-Bucket Captures

We observe that multi-bucket captures capture redundant information in static regions of the scene, since each pixel in
a static region has the same expected value under random binary modulation. Hence, we propose coding only dynamic
regions—the dynamic region-of-interest (RoI) can be determined by masking pixels whose coded exposures deviate signifi-
cantly from one-another. As seen in Suppl. Fig. 2, the dynamic content may just be 25% of the image area, which provides
significant scope for bandwidth savings. We observe that we can code just 25% of the total pixels, among additional compres-
sive measurements, without a perceptible drop in visual quality, which yields an overall bandwidth requirement of 1.45×, or
under twice the bandwidth cost of a single compressive measurement.

Results on More Sequences

Additional results are shown in Suppl. Fig. 3.
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Supplementary Figure 2: Coding dynamic regions can reduce readout of multi-bucket captures. (left column) Dynamic
regions are detected by computing the standard deviation of the coded exposures and thresholding them appropriately (e.g.,
by the 75th percentile)—we show the dynamic regions in white here. Coded exposures are transmitted only in the dynamic
regions. For the static regions, we simply use a long exposure—by adding multi-bucket captures. (right column) We observe
that readout-bandwidth can be reduced to 1.75× from 4× in the case of a four-bucket capture with no perceptual degradation
of reconstruction quality. Bandwidth is provided here as a multiple of the readout of a single compressive capture.



Newton’s Cradle (25 Hz to 800 FPS, two-bucket capture) 

#1 #5 #9 #13

#21 #25 #29#17

Jack-in-the-box (25 Hz to 400 FPS, single compressive capture) 

Long exposure

Video frames

#1 #3 #5 #7

#11 #13 #15#9

Spinning Casino Roulette(25 Hz to 400 FPS, single compressive capture) 

#1 #3 #5 #7

#11 #13 #15#9

Bursting balloon (50 Hz to 2000 FPS, eight-bucket capture)

#1 #11 #21 #31

#51 #61 #71#41

Supplementary Figure 3: Results on additional sequences. We use Hertz (Hz) to indicate the rate of emulation and frames-
per-second (FPS) to indicate the frame-rate of the reconstructed video. Frame numbers are indicated in yellow font.



Supplementary Note 2. Event Cameras
Event-Generation Pseudocode

We provide the pseudocode for emulating events from photon-cubes in Algorithm 2. The contrast threshold τ and ex-
ponential smoothing factor β are the two parameters that determine the characteristics of the resulting event stream, such
as its event rate (number of events per second). We use an initial time-interval T0 (typically 80–100 bit-planes) to initialize
the reference moving average, with T0 being much smaller than T . The result of this pseudocode is an event-cube, Et(x),
which is a sparse spatio-temporal grid of event polarities—positive spikes are denoted by 1 and negative spikes by −1.
From the emulated event-cube, other event representations can be computed such as: an event stream, {(x, t, p)}, where
p ∈ {−1, 1} indicates the polarity of the event; a frame of accumulated events [12] (seen in Figs. 4 and 9); and a voxel grid
representation [27], where events are binned into a few temporal bins (shown in Suppl. Fig. 4 (top left) using 3 temporal
bins).

Algorithm 2 Event Camera Emulation

Require: Photon-cube Bt(x)
Contrast threshold τ
Exponential smoothing factor, β
Pixel locations X
Initial time-interval T0, for computing reference moving average
Total bit-planes T

Ensure: Event-cube Et(x) that describes the spatio-temporal spikes
function EVENTCAMERAEMULATION(Bt(x), τ , β, T0)

Et(x)← 0, ∀ t, ∀x
for x ∈ X do

Reference moving average, µref(x)← 0
Current moving average, µ0(x)← 0
for 1 ≤ t ≤ T0 do

µref(x)← βµref(x) + (1− β)Bt(x)
end for
for T0 ≤ t ≤ T do

µt(x)← βµt−1(x) + (1− β)Bt(x)
if |µt(x)− µref(x)| > τ then

Et(x)← sign(µt(x)− µref(x))
µref(x)← µref(x) + τ ∗ sign(µt(x)− µref(x))

end if
end for

end for
return Et(x)
end function

Compatibility of SPAD-Events with Existing Event-Vision Algorithms

We now provide examples of downstream algorithms applied to SPAD-events, which shows the compatibility of the
emulated event streams with existing event-vision algorithms. Supplementary Figure 4 shows three downstream algorithms
with SPAD-events as their input: Contrast Maximization [8] which generates a warped image of events that has sharp edges
(top right), E2VID [13] which estimates intensity frames from an event stream (bottom left), and DCEIFlow [21] which
computes dense optical flow using intensity frames and aligned events (bottom right). Both E2VID and DCEIFlow use a
voxel grid representation of events as their inputs. We include the visualization of a voxel grid representation in Suppl. Fig. 4
(top left). All event streams were emulated using 3000 bit-planes of photon-cubes acquired at 96.8 kHz, and using β = 0.95
and τ = 0.4 as emulation parameters. We note that the performance of these algorithms can be improved by finetuning
pre-trained learning-based models on a dataset of SPAD-events.



Contrast Maximization

Intensity image from events (E2VID)

Predicted intensityEvent image

Event image Warped event image

Dense optical flow prediction (DCEIFlow)

Event image Predicted optical flow

Voxel grid representation (3 bins)

Supplementary Figure 4: Compatibility of SPAD-events with existing event-vision algorithms. The flow field visualiza-
tion follows Baker et al. [2]. The photon-cube for the contrast maximization output was obtained from Ma et al. [11].

Ablation of Brightness-Encoding Functions

Our event emulation scheme (Algorithm 2) relies on the SPAD’s response curve to encode scene brightness, which is a
non-linear and non-saturating response of the form

1− exp(−αΦ(x, t)),

where α = ηtexp and assuming negligible dark count rate (DCR). Current event-cameras typically use a logarithmic response
to encode scene brightness. This can also be utilized to emulate events from photon-cubes by setting h (as described in
Eq. (8)) to be the log-MLE function:

h(µ) = log

(
− log(1− µ)

ηtexp

)
.

However, a log-response suffers from underflow issues, particularly at low-light scenarios as seen in Suppl. Fig. 5.

SoDaCam Flexibility and SPAD-Events

Here are a few benefits of the SoDaCam approach for event-based imaging:

• Direct access to intensity information. By computing a sum-image, SoDaCam makes intensity frames that are
spatially- and temporally-aligned with the generated event stream available. This precludes the need for multiple
devices, which often requires careful alignment and calibration.

• Further, the intensity frames obtained via the sum-image feature the SPAD’s imaging capabilities, i.e., such intensity
frames feature a high dynamic range and can be utilized in low-light imaging scenarios. This is in contrast to dynamic
active vision sensors (DAVIS) [3, 6], where a conventional frame, which has limited dynamic range and low-light
capabilities compared to SPAD-derived images, can be obtained in addition to the event stream.

• Computing multiple event-streams simultaneously. Contrast threshold τ is an important parameter that controls the
sparsity and noise level of generated event stream: small values of τ can produce potentially noisy event streams that
require extensive processing, while large values of τ can result in very sparse streams with less useful information.
With SoDaCam, it is possible to emulate event streams with different values of τ simultaneously, thereby amortizing
these trade-offs. In fact, this can be thought of analogous to exposure stacks but in the context of event-imaging.
Supplementary Figure 6 (top row) shows an example of an ‘event-image stack’.
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Supplementary Figure 5: Comparison of brightness encoding functions. While the log-MLE is comparable to using the
SPAD’s response curve at ambient light levels, at low flux levels the underflow issues associated with the log function occur.
Here, α denotes a sensor-determined and flux-independent constant.

• Per-pixel contrast thresholds. We can also vary the contrast threshold τ as a function of pixel location or incident
intensity. For instance, we can use a smaller contrast threshold if we have an estimate of the incident intensity with
less variance and a higher contrast threshold when there is more variance. We show an example of this in Suppl. Fig. 4
(bottom right), where we vary the contrast threshold between 0.35 and 0.45 as a linear function of the sample variance
of the moving average, µt(x).



Event stack (different contrast thresholds)

Events overlaid on image Variance adaptive policy

Supplementary Figure 6: Flexible event-based imaging. (top) An ‘event-stack’ that employs increasing contrast thresholds,
τ = 0.35, 0.4, 0.45. (bottom) We can also output frames with aligned events, and use event generation policies that may not
be trivial to realize in hardware—such as varying the contrast threshold τ as a linear function of the sample variance.



Supplementary Note 3. Motion Projections
Pseudocode for Emulating Motion Cameras

Algorithm 3 provides the pseudocode for emulating sensor motion from a photon-cube, where the sensor’s trajectory is
determined by the discretized function r. At each time instant t, we shift bit-planes by r(t) and accumulate them in Ishift.
For pixels that are out-of-bounds, no accumulation is performed. For this reason, the number of summations that occur
vary spatially across pixel locations x—we normalize the emulated shift-image by the number of pixel-wise accumulations
N(x) to account for this. The function r can be obtained by discretizing any smooth 2D trajectory: by either rounding up or
dithering, or by using a discrete line-drawing algorithm [4].

Algorithm 3 Motion Camera Emulation

Require: Photon-cube Bt(x)
Discretized trajectory r(t)
Pixel locations X
Total bit-planes T

Ensure: Ishift(x)
function MOTIONCAMERAEMULATION(Bt(x), r)
Ishift(x)← 0, ∀x
for x ∈ X do

Normalizer, N(x)← 0
for 1 ≤ t ≤ T do

if x+ r(t) ∈ X then
N(x)← N(x) + 1
Ishift(x)← Ishift(x) +Bt(x+ r(t))

end if
end for
if N(x) > 0 then
Ishift(x)← Ishift(x)/N(x)

end if
end for

return Ishift(x)
end function

As described in Sec. 5.3, we consider two trajectories: linear and parabolic. Linear trajectories are parameterized by their
slope

r(t) = v

(
t− T

2

)
p̂,

where v is the object velocity, p̂ is a unit vector that describes the trajectory’s direction, and T is the total number of bit-planes.
Parabolic trajectories are parameterized by their maximum absolute slope, vmax

r(t) =
vmax

T

(
t− T

2

)2

p̂.

To prevent tail-clipping, which are image artifacts introduced by the finite extent of the parabolic integration, it is important
to choose vmax to be sufficiently higher than the velocity of objects in the scene. Both linear and parabolic trajectories have a
zero at t = T/2—which allows blending multiple linear projections without any pixel alignment issues.

Blending Multiple Linear Projections

As shown in Fig. 8, randomly sampling multiple linear projections (seen in Suppl. Fig. 7 (left column)) can provide motion
compensation when only the motion direction, and not the exact extent of motion, is known. To blend these projections, in
addition to the randomly sampled linear projections, we also compute two short exposures using bit-planes at the beginning
and end of the photon-cube. For the scenes shown in Fig. 8, we used the first 200 and the last 200 bit-planes to emulate short
exposures. We then use RAFT [17] to predict optical flow between the two short exposures—which can be used to select the



linear projection that can best compensate motion as a function of the pixel location (as seen in Suppl. Fig. 7 (left column)).
We did not have to perform any spatial smoothing after selecting linear projections, since the optical flow predicted by RAFT
was reasonably smooth.

Blending can also be achieved by choosing the least blurred linear projection in a per-pixel manner—similar to how focal
stacking is typically achieved. This would however require predicting per-pixel blur kernels or constructing a measure of
motion blur. Laplacian filters, which are typically used for focal stacking, do not readily work with motion stacks.

Randomly sampled linear projections

!	 = 	0	pixels/burst !	 = 5	pixels/burst 

!	 = 39	pixels/burst !	 = 32	pixels/burst !	 = 25	pixels/burst !	 = 21	pixels/burst 

!	 = 9	pixels/burst !	 = 17	pixels/burst Predicted optical flow

Blended image

Supplementary Figure 7: An example of motion stack blending. (left) We sample 8 linear projections randomly along the
road’s orientation such that their ensuing pixel displacements are uniformly between 0 and 40 pixels. (right) We then blend
them using the optical flow field that is predicted between two short exposures computed from the same photon-cube. The
flow field visualization follows Baker et al. [2].



Supplementary Note 4. Experimental Setup for Secs. 6.1 and 6.2
Cameras and Sensory Arrays Used

We used the following imagers for our experiments described in Secs. 6.1 and 6.2:

• SwissSPAD2 array a 512× 512 SPAD array that can be operated at a maximum frame-rate of 97 kHz. We operate the
SwissSPAD2 in its ‘half-array’ mode: utilizing one of two sub-arrays, with a resolution of 512×256 pixels. The SPAD
pixels have a pixel pitch of 16.4 µm and a low fill-factor of 10%, owing to the lack of microlenses in the prototype.

• Prophesee EVK4 event camera, which is a state-of-the-camera commercial event camera featuring a sensor resolution
of 1280× 720 pixels, pixel pitch of 4.86 µm and a fill-factor of > 77%.

• Photron infinicam a conventional high-speed camera that can stream acquisition over USB-C at a resolution of 1246×
1024 pixels and 1 kHz frame-rate. For higher frame-rates, it is necessary to reduce the number of rows that are read
out—for the example, we use a resolution of 1246× 240 pixels to obtain acquisition at 4 kHz in Fig. 10.

SwissSPAD2

Photron
Infinicam

Prophesee
EVK4

Supplementary Figure 8: Cameras and sensor arrays used for the experiments described in Secs. 6.1 and 6.2. The
Infinicam and Prophesee were used for the comparisons made in Figs. 9 and 10 respectively.

Removing Hot Pixels

A few SPAD pixels (around 5% of the total pixels in our prototype) have extremely high dark current rate and therefore
have Bt(x) = 1 almost always. We detect these hot pixels by capturing a photon-cube of 100000 bit-planes in a very dark
environment and detecting pixel locations with high photon counts. For video compressive and event imagers, we inpaint
projections using OpenCV’s implementation of the Telea algorithm [18]. For motion projections, we do not sum over bit-
plane locations that correspond to hot pixels during integration. Further, we remove pixel locations from the hot pixel mask
if the motion trajectory provides access to neighboring values that are not hot pixels. We inpaint the motion projection after
excluding these points.

Experiment-wise Lens Specifications

We used C-mount lenses for our experiments with the following focal lengths:

• 12 mm for the comparison to Prophesee EVK4 in Fig. 9. The Prophesee EVK4 and the SwissSPAD2 were used with
the same lens specifications.

• 16 mm for the coded exposures shown in Fig. 2.

• 35 mm for the spinning casino roulette shown in Figs. 4 and 10.

• 50 mm for the motion stack shown in Fig. 6 and the traffic scene shown in Fig. 8.

• 75 mm for the falling die sequence shown in Fig. 1, the measure tape sequence shown in Fig. 5, and the water splash
captured in Fig. 7.



Supplementary Note 5. UltraPhase Experiments
Processor Description

The chip consists of a 3×6 array of processing cores, each of which can interface with 4×4 SPAD pixels via 3D stacking.
At this point, the 3D stacking has not been completed, so we interface UltraPhase with the photon-cubes acquired by the
SwissSPAD2 [19] instead. Every core is independent, has 4 kb of available RAM, and can execute programs of up to 256
instructions in length at a rate of 140 million instructions per second (MIPS). The system supports a wide range of instructions
including, bit-wise operations, 32-bit arithmetic operations, data manipulation and custom inter-core synchronization. For
more details, please refer to Ardelean [1].

We implement projections on UltraPhase by using a custom assembly code to program each core separately. We include
the commented assembly code for all three projections in Listings 1 to 3. To compute multiple projections, we simply run
projections sequentially, one bit-plane at a time. Since each projection can be computed significantly faster than the camera
frame-rate (e.g., 1.678 ms for video compressive sensing of 40 Hz readout), this does not bottleneck acquisition. We include
the processing time for each projection in Tab. 1.

Measuring Bandwidth

We assume that the outputs for sum, video compressive and motion projections have 12-bit depth. For event cameras,
we assume that each event consists of 18-bits—-9-bits to encode the pixel location (⌈log2(12× 24)⌉), 8 bits to represent
the timestamp (corresponding to the bit-plane index where the event was triggered), and 1-bit to encode polarity. We then
measure readout on a 12 × 24 region-of-interest (RoI) of the falling die sequence that was acquired using the SwissSPAD2.
Table 1 lists the readout bandwidth for each projection.

Measuring Power

The power consumption of UltraPhase is comprised of compute power and readout power. For compute power, the chip
was characterized by executing instructions corresponding to each projection in an infinite loop and measuring its average
power consumption. As an upper bound, we assumed the maximum possible power consumption for operations that involved
reading and writing to the RAM. This measured power consumption was then scaled by the duty cycle of each projection—
which is the ratio of the time required to process a bit-plane to the exposure time of each bit-plane.

For readout power, we consider a conventional digital interface at 3.3 V with a load of 7 pF operating at the specified
bandwidth, amounting to 54 nanowatts for each kilobit readout (nW/kbps)—this is similar, for instance, to the USB interface
utilized by the SwissSPAD2.

Table 1 provides the processing power, readout power and the total power for each projection. Clearly, processing requires
an order of magnitude (or more) lesser power than readout, which explains how computing photon-cube projections results
in reduced sensor power consumption.

Table 1: Power and bandwidth benchmarks when computing photon-cube projections on UltraPhase, a 24 × 12 array, at
40 Hz readout. We compare computing projections to reading out the entire photon-cube. We report the processing time, the
readout bandwidth, and the compute and readout power for each projection.

Processing time ↓ Bandwidth ↓ Power ↓
(ms) (kbps) Processing (µW) Readout (µW) Total (µW)

12-bit sum image 0.981 135 0.3 7.29 7.6
Snapshot compressive 1.678 135 3.0 7.29 10.3
Motion projection 1.096 135 1.3 7.29 8.6
Event camera 9.817 101.25 2.4 5.83 8.2

Three projections 12.591 405 6.7 21.87 28.6

Photon-cube readout 0.007 28125 5.4× 10−3 1518.8 1518.8



Table 2: Power consumption of SoDaCam versus conventional cameras (in mW), estimated for 512 × 256 pixels at 40 Hz
readout. CMOS estimates assume the usage of column-parallel ADCs [15].

Photon detection Compute Readout Total

Dark Ambient Dark Ambient

Photon-cube
readout 1 62 - 690 691 752

Sum-image 1 62 0.3 4.5 5.8 66.8
VCS 1 62 1.3 4.5 6.8 67.8
Motion proj. 1 62 0.7 4.5 6.2 67.2
Event camera 1 62 1 3.6 5.6 66.6
Three proj.(s) 1 62 3 13.5 17.5 78.5

CMOS @ 40 FPS ∼10–25 - 4.5 ∼15–30

CMOS @ 4k FPS ∼600–2500 - 450 ∼1000–3000

Comparison to CMOS Sensors

In addition to compute and readout power quantified in the previous section, a computational SPAD also consumes power
to detect photons. By incorporating this photon-detection power, we can provide a rough comparison of SoDaCam projections
to CMOS sensors. The photon-detection dissipation depends on the number of photon detections, and hence varies with the
light level—for the SwissSPAD2, this is measured to be < 1mW in the dark and ∼62 mW in indoor lighting [19]. To estimate
compute and readout power, we linearly scale the measurements presented in Tab. 1 for an array of 512 × 256 pixels. We
note that this is a conservative estimate, since UltraPhase is not designed to be a low-power device.

As seen in Tab. 1, under ambient lighting, the power consumption of our emulated cameras is higher than conventional
CMOS cameras; while in low-light, the SPAD consumes lesser power owing to fewer photon detections. We remark that
without the bandwidth reduction facilitated by photon-cube projections, SPADs are at a considerable disadvantage compared
to their CMOS counterparts. Finally, we provide a comparison against high-speed CMOS cameras, which can also be used
to obtain photon-cube projections, albeit with a read noise penalty (Sec. 6.2), and higher power consumption.

Visualization of Projections

Since UltraPhase is a low-resolution sensor-processor (12×24 pixels), we visualize projections by repeating computations
in a tiled manner to cover a region-of-interest (RoI) of 60× 60 pixels. Supplementary Figure 9 shows the visualization of an
event camera emulated on UltraPhase. To provide more context, we include the CPU visualization of the entire SwissSPAD2
event-frame. We also verified that the outputs of UltraPhase were identical to CPU-run outputs by computing the RMSE
between event frames that result from UltraPhase computations and CPU computations (see error map in Suppl. Fig. 9).

CPU
Complete SwissSPAD2 frame

UltraPhase
60	×	60 RoI

CPU
60	×	60 RoI

Error map
60	×	60 RoI
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Supplementary Figure 9: Event camera computed using UltraPhase, on 2500 bit-planes of the falling die sequence. For
visualization purposes, we run computations on UltraPhase in a tiled manner so as to cover a RoI of 60 × 60 pixels. We
compare this to CPU-run outputs of the same RoI and verify that they are identical. For context, we highlight this RoI using
a bounding box on the CPU-run event-frame that has a resolution of 256× 512 pixels. The event simulation parameters used
were τ = 0.45, β = 0.95, T0 = 80.



Listing 1: Custom assembly code for implementing video compressive sensing on UltraPhase. Here, we consider com-
puting one compressive snapshot that is multiplexed by 16 binary random masks.

--RAM(64..127) stores the 64 subframe compression code masks as one bit per pixel in byte1 and byte0
--The output is available in RAM(0..15)
--CtrlOut is strobed after every binary frame

#define pixelValue 0 --register R0 is used for the pixel values
#define frameIdx 1 --register R1 is used as a counter for the

current binary frame↪→

#define subFrameIdx 2 --register R2 is used as a counter for the current
subFrame↪→

#define mask 3 --register R3 is used to store the
compression codes for the current subframe↪→

#define aux0 4 --register R4 is used for
#define aux1 5 --register R5 is used for
#define CtrlOut 0b10000 --address for external trigger signal
#define toMask 0b001000 --address used to fetch to R3 (mask)

0: LOAD subFrameIdx, $64, 0 --initialize subFrame pointer to 0 + 64 (RAM offset)
1: LOAD subFrameIdx, $0, 1
2: LOAD frameIdx, $16, 0 --initialize frameIdx pointer to 16 i.e. number of

bit_planes_per_subframe↪→

3: LOAD frameIdx, $0, 1

4: GETP 5, 1, 0 --get pixel data and store it in R0
(pixelValue)↪→

5: FETCH @subFrameIdx, toMask, 0 --get the appropriate mask
6: AND pixelValue, mask, pixelValue --apply mask i.e. multiply with code[subframe]
7: CALL 50 --accumulate pixels
8: TELL CtrlOut, 0 --strobe CtrlOut

-----------------------------------------------------
-- update indexes
9: OR aux0, aux0, aux0 --clear flags
10: SUBC frameIdx, $1 --decrement frameIdx
11: JUMPZ 13 --check if we finished with all the binary

planes per subframe↪→

12: JUMP 4 --if not, then move on
13: OR aux0, aux0, aux0 --clear flags
14: ADDC subFrameIdx, $1 --move to next subFrame
15: JUMP 2 --reset frameIdx and continue

-----------------------------------------------------
-- this subroutine will accumulate the pixel values from pixelValue
50: LOAD aux0, $16, 0 --set R4 (aux0) to 16
51: LOAD aux0, $0, 1
52: LOAD aux1, $0, 0 --set R5 (aux1) to 0
53: LOAD aux1, $0, 1
54: OR aux0, aux0, aux0 --clear flags
55: SR0 pixelValue, pixelValue --extract one pixel
56: ADDC (aux0), aux1, (aux0) --increment if pixel is 1
57: SUBC aux0, $1 --decrement counter
58: JUMPNZ 54 --repeat until done with all 16 pixels
59: RET



Listing 2: Custom assembly code for implementing event cameras on UltraPhase.

--The core will strobe CtrlOut every time an evet took place and the SoC needs to read RAM(0) to get it

#define toaux0 0b000010
#define toaux1 0b000100
#define pixelValue 0 --register R0 is used for the binary pixel values
#define aux0 1 --register R1 is used for misc
#define aux1 2 --register R2 is used for misc
#define Bpointer 3 --register R3 is used as a pointer to the reference_average stored in

RAM(17..32)↪→

#define Apointer 4 --register R4 is used as a pointer to the current_average stored in
RAM(1..16)↪→

#define pixelIdx 5 --register R5 is used for the current pixel index
#define CtrlOut 0b10000 --address for external trigger signal
#define NOut 0b01000 --address for north trigger signal
#define decayAddress 127 --RAM address 127 stores the exponential_decay
#define decayComplementAddress 126 --RAM address 126 stores the value for 1-exponential_decay
#define intervalAddress 125 --RAM address 125 stores the initial_interval
#define thresholdAddress 124 --RAM address 124 storesthe contrast_threshold
#define frameIdxAddress 123 --RAM address 123 stores the frame_index counter

0: GETP 5, 1, 0 --get pixel data and
store it in R0 (pixelValue)↪→

1: LOAD pixelIdx, $0, 1 --set R5 (pixelIdx) to
16 to use as counter for the pixels↪→

2: LOAD pixelIdx, $16, 0
3: LOAD Apointer, $0, 1 --initialize pointers
4: LOAD Apointer, $1, 0
5: LOAD Bpointer, $0, 1
6: LOAD Bpointer, $17, 0

7: FETCH @decayAddress, toaux0, 0 --get decay constant from RAM and
store it into R1 (aux0)↪→

8: FETCH @decayComplementAddress, toaux1, 0 --get (1 - decay) constant from RAM and
store it into R2 (aux1)↪→

9: MUL (Apointer), aux0, (Apointer) -- current_average[pixelIdx] =
exponential_decay * current_average[pixelIdx]↪→

10: SRX (Apointer), (Apointer) -- 8 fractional bit
multiplication↪→

11: SRX (Apointer), (Apointer)
12: SRX (Apointer), (Apointer)
13: SRX (Apointer), (Apointer)
14: SRX (Apointer), (Apointer)
15: SRX (Apointer), (Apointer)
16: SRX (Apointer), (Apointer)
17: SRX (Apointer), (Apointer)

18: SR0 pixelValue, pixelValue --shift R0 (pixelValue) to the
right and pad with 0; the pixel bit is loaded into the carry flag↪→

19: JUMPNC 21
--current_average[pixelIdx]

= current_average[pixelIdx] + (1-exponential_decay) * 0
↪→

↪→

20: ADD (Apointer), aux1, (Apointer) --current_average[pixelIdx] =
current_average[pixelIdx] + (1-exponential_decay) * 1↪→

21: FETCH @frameIdxAddress, toaux0, 0 --get frame_index from RAM and store it into
R1 (aux0)↪→

22: FETCH @intervalAddress, toaux1, 0 --get initial_interval from RAM and store it
into R2 (aux1)↪→

23: CMP aux0, aux1 --check if
frame_index < initial_interval↪→

24: JUMPNC 40 --if not, jump and
process↪→



25: FETCH (Apointer), toaux0, 0 --if yes, get
current_average[pixelIdx]↪→

26: STORE aux0, (Bpointer) --reference_average[pixelIdx]
= current_average[pixelIdx]↪→

27: JUMP 70 --GO TO NEXT
PIXEL↪→

-- frame_index is larger than initial_interval
40: FETCH (Apointer), toaux0, 0 --if not, get

current_average[pixelIdx] and store it into R1 (aux0)↪→

41: FETCH (Bpointer), toaux1, 0 --get
reference_average[pixelIdx] and store it into R2 (aux1)↪→

42: SUB aux0, aux1, aux0 --diff[pixelIdx] =
current_average[pixelIdx] - reference_average[pixelIdx] and store it into R1 (aux0)↪→

43: JUMPNC 60 --diff is
positive↪→

-- compare abs(diff) with threshold if diff is negative
44: FETCH @thresholdAddress, toaux1, 0 --get contrast_threshold and store it

into R2 (aux1)↪→

45: NEG aux1, aux1 --diff is negative,
so make contrast_threshold negative and store it into R2 (aux1)↪→

46: CMP aux0, aux1 --if diff <
-contrast_threshold↪→

47: JUMPNC 70 --if not, GO TO
NEXT PIXEL↪→

48: NEG pixelIdx, @0 --RAM(0) = -pixel_index
i.e. a negative event↪→

49: ADD (Bpointer), aux1, (Bpointer) --reference_average += contrast_threshold *
(-1)↪→

50: TELL CtrlOut, 0 --strobe CtrlOut to
signal an event↪→

51: JUMP 70 --GO TO NEXT
PIXEL↪→

-- compare abs(diff) with threshold if diff is positive
60: FETCH @thresholdAddress, toaux1, 0 --get contrast_threshold and store it

into R2 (aux1)↪→

61: CMP aux1, aux0 --if diff >
contrast_threshold↪→

62: JUMPNC 70 --if not, GO TO
NEXT PIXEL↪→

63: STORE pixelIdx, @0 --RAM(0) = pixel_index
i.e. a positive event↪→

64: ADD (Bpointer), aux1, (Bpointer) --reference_average += contrast_threshold *
1↪→

65: TELL CtrlOut, 0 --strobe CtrlOut to
signal an event↪→

66: JUMP 70 --GO TO NEXT
PIXEL↪→

--GO TO NEXT PIXEL
70: OR pixelValue, pixelValue, pixelValue --clear flags
71: ADDC Apointer, $1 --increment Apointer
72: ADDC Bpointer, $1 --increment Bpointer
73: SUBC pixelIdx, $1 --decrement pixel counter
74: JUMPNZ 7 --if not done with

pixels, go to next one↪→

75: FETCH @frameIdxAddress, toaux0, 0 --if done with pixels, increment frame
counter and get new pixel values↪→

76: TELL NOut, 0 --strobe NOut to signal
a new exposure↪→

77: ADDC aux0, $1
78: STORE aux0, @frameIdxAddress
79: JUMP 0



Listing 3: Custom assembly code for implementing motion projections on UltraPhase. Without loss of generality, we
consider a linear projection along the horizontal direction.

--The projection is available in RAM(0..15)
-- CtrlOut is strobed after every frame

#define Xshift 0 --register R0 is used for the horizontal shift
#define timestep 1 --register R1 is used for the current timestep
#define origPixels 2 --register R2 is used for the current core's pixels
#define shiftPixels 3 --register R3 is used for the shifted pixels
#define aux0 4 --register R4 is used for misc
#define aux1 5 --register R5 is used for misc
#define CtrlOut 0b10000 --address for external trigger signal
#define shiftL3neighAddr 127 --RAM(127) stores the 0b0111_0111_0111_0111 mask
#define shiftL3currAddr 126 --RAM(126) stores the 0b1000_1000_1000_1000 mask
#define shiftL2neighAddr 125 --RAM(125) stores the 0b0011_0011_0011_0011 mask
#define shiftL2currAddr 124 --RAM(124) stores the 0b1100_1100_1100_1100 mask
#define shiftL1neighAddr 123 --RAM(123) stores the 0b0001_0001_0001_0001 mask
#define shiftL1currAddr 122 --RAM(122) stores the 0b1110_1110_1110_1110 mask

0: LOAD Xshift, $0xFFF8, 0 --load -8 into Xshift as initial value
1: LOAD Xshift, $0xFFFF, 1
2: CALL 50 --get the correct pixel values according to Xshift
3: CALL 30 --accumulate pixels
4: CALL 20 --advance time
5: TELL CtrlOut, 0 -- strobe CtrlOut to signal a new frame
6: JUMP 2 --repeat

-----------------------------------------------------
-- this subroutine will advance timestep and update Xshift
20: OR timestep, timestep, timestep --clear flags
21: ADDC timestep, $1 --increment timestep
22: OR timestep, timestep, aux0 --copy timestep to aux0
23: SPLIT aux0, 5, 0b010000 --timestep = timestep/1024
24: SR0 aux0, aux0
25: SR0 aux0, aux0
26: LOAD aux1, $1, 0 --load aux1 with the Xspeed value of 1
27: MAC aux0, aux1, Xshift, Xshift --Xshift += Xspeed*timestep/2
28: RET

-----------------------------------------------------
-- this subroutine will accumulate the pixel values from shiftPixels
30: LOAD aux0, $16, 0 --set R4 (aux0) to 16
31: LOAD aux0, $0, 1
32: LOAD aux1, $0, 0 --set R5 (aux1) to 0
33: LOAD aux1, $0, 1
34: OR aux0, aux0, aux0 --clear flags
35: SR0 shiftPixels, shiftPixels --extract one pixel
36: ADDC (aux0), aux1, (aux0) --increment if pixel is 1
37: SUBC aux0, $1 --decrement counter
38: JUMPNZ 34 --repeat until done with all 16 pixels
39: RET

-----------------------------------------------------
-- this subroutine will get pixel values from the core and the correct neighbour based on the Xshift
50: GETP 5, 4, 0 --get pixel values and store them in R2

(origPixels)↪→

51: OR Xshift, Xshift, aux1 --copy current shift into R5 (aux1)
52: LOAD aux0, $0, 0 --set R4 (aux0) to 0 to use for Xshift comparison
53: LOAD aux0, $0, 1
54: CMP aux1, aux0 --compare current shift with 0
55: JUMPZ 115 --current shift = 0
56: JUMPC 120 --current shift < 0
57: JUMP 58 --current shift > 0
-------------------------------
-- positive shifts



58: LOAD aux0, $4, 0 --set R4 (aux0) to 4 for current shift comparison
59: LOAD aux0, $0, 1
60: CMP aux0, aux1
61: JUMPC 105 --current shift > 4, read from the neighbour's neighbour
62: JUMPZ 100 --current shift is 4
63: LOAD aux0, $2, 0 --set R4 (aux0) to 2, for current shift comparison
64: CMP aux0, aux1
65: JUMPC 90 --current shift is 3
66: JUMPZ 80 --current shift is 2

-- shift is 1
67: SL0 shiftPixels, shiftPixels --pixels from the neighbour need to be shifted

to the left 3 times↪→

68: SL0 shiftPixels, shiftPixels
69: SL0 shiftPixels, shiftPixels
70: OR origPixels, origPixels, aux1 --save curent pixels in the aux1 variable
71: SR0 aux1, aux1 --pixels from this core need

to be shifted to the right once↪→

72: AND shiftPixels, @shiftL3currAddr, shiftPixels --apply mask to select relevant bits from
neighbour↪→

73: AND aux1, @shiftL3neighAddr, aux1 --apply mask to select relevant bits from
current core↪→

74: OR shiftPixels, aux1, shiftPixels --combine to create final pixel values
75: RET

-- shift is 2
80: SL0 shiftPixels, shiftPixels --pixels from neighbour need to

be shifted to the left 2 times↪→

81: SL0 shiftPixels, shiftPixels
82: OR origPixels, origPixels, aux1 --save curent pixels in the aux1

variable↪→

83: SR0 aux1, aux1 --pixels from
this core need to be shifted to the right 2 times↪→

84: SR0 aux1, aux1
85: AND shiftPixels, @shiftL2currAddr, shiftPixels --apply mask to select relevant bits from

neighbour↪→

86: AND aux1, @shiftL2neighAddr, aux1 --apply mask to select relevant
bits from current core↪→

87: OR shiftPixels, aux1, shiftPixels --combine to create final pixel
values↪→

88: RET

-- shift is 3
90: SL0 shiftPixels, shiftPixels --pixels from neighbour need to

be shifted to the left once↪→

91: OR origPixels, origPixels, aux1 --save curent pixels in the aux1
variable↪→

92: SR0 aux1, aux1 --pixels from
this core need to be shifted to the right 3 times↪→

93: SR0 aux1, aux1
94: SR0 aux1, aux1
95: AND shiftPixels, @shiftL1currAddr, shiftPixels --apply mask to select relevant bits from

neighbour↪→

96: AND aux1, @shiftL1neighAddr, aux1 --apply mask to select relevant
bits from current core↪→

97: OR shiftPixels, aux1, shiftPixels --combine to create final pixel
values↪→

98: RET

-- shift is 4
100: PUTN origPixels, 4 --shift your pixels to the left (share pixels with

neighbour)↪→

101: SAVEN 1 --save pixels from rigth neighbour
102: GETN 0, 8, 0 --get pixels from rigth neighbour and store in

shiftPixels↪→

103: RET



-- shift is > 4
105: PUTN origPixels, 4 --shift your pixels to the left (share pixels with

neighbour)↪→

106: SAVEN 1 --save pixels from right neighbour
107: GETN 0, 8, 0 --get pixels from right neighbour and store in

shiftPixels↪→

108: OR aux1, aux1, aux1 --clear Carry flag
109: SUBC aux1, $4 --subtract 4 from current shift because we read from

a neighbour↪→

110: JUMP 58

-------------------------------
-- shift is zero
115: OR origPixels, origPixels, shiftPixels --the shift is zero, so keep the pixels
116: RET

-------------------------------
-- negative shifts
120: LOAD aux0, $FFFC, 0 --set R4 (aux0) to -4 to use for current shift comparison
121: LOAD aux0, $0xFFFF, 1
122: CMP aux1, aux0
123: JUMPC 170 --current shift < -4 so we need to read from

neighbour's neighbour↪→

124: JUMPZ 160 --current shift is -4
125: LOAD aux0, $FFFE, 0 --set R4 (aux0) to -2 to use for current shift comparison
126: CMP aux1, aux0
127: JUMPC 150 --current shift is -3
128: JUMPZ 140 --current shift is -2

-- shift is -1
129: SR0 shiftPixels, shiftPixels --pixels from

neighbour need to be shifted to the right 3 times↪→

130: SR0 shiftPixels, shiftPixels
131: SR0 shiftPixels, shiftPixels
132: OR origPixels, origPixels, aux1 --save curent pixels in

the aux1 variable↪→

133: SL0 aux1,
aux1 --pixels from
this core need to be shifted to the left once

↪→

↪→

134: AND shiftPixels, @shiftL1neighAddr, shiftPixels --apply mask to select relevant bits from
neighbour↪→

135: AND aux1, @shiftL1currAddr, aux1 --apply mask to select
relevant bits from current core↪→

136: OR shiftPixels, aux1, shiftPixels --combine to create final
pixel values↪→

137: RET

-- shift is -2
140: SR0 shiftPixels, shiftPixels --pixels from

neighbour need to be shifted to the right 2 times↪→

141: SR0 shiftPixels, shiftPixels
142: OR origPixels, origPixels, aux1 --save curent pixels in

the aux1 variable↪→

143: SL0 aux1,
aux1 --pixels from
this core need to be shifted to the left 2 times

↪→

↪→

144: SL0 aux1, aux1
145: AND shiftPixels, @shiftL2neighAddr, shiftPixels --apply mask to select relevant bits from

neighbour↪→

146: AND aux1, @shiftL2currAddr, aux1 --apply mask to select
relevant bits from current core↪→

147: OR shiftPixels, aux1, shiftPixels --combine to create final
pixel values↪→

148: RET

-- shift is -3



150: SR0 shiftPixels, shiftPixels --pixels from
neighbour need to be shifted to the right once↪→

151: OR origPixels, origPixels, aux1 --save curent pixels in
the aux1 variable↪→

152: SL0 aux1,
aux1 --pixels from
this core need to be shifted to the left 3 times

↪→

↪→

153: SL0 aux1, aux1
154: SL0 aux1, aux1
155: AND shiftPixels, @shiftL3neighAddr, shiftPixels --apply mask to select relevant bits from

neighbour↪→

156: AND aux1, @shiftL3currAddr, aux1 --apply mask to select
relevant bits from current core↪→

157: OR shiftPixels, aux1, shiftPixels --combine to create final
pixel values↪→

158: RET

-- shift is -4
160: PUTN origPixels, 1 --shift your pixels to the right (share pixels with

neighbour)↪→

161: SAVEN 4 --save pixels from left neighbour
162: GETN 2, 8, 0 --get pixels from left neighbour and store in

shiftPixels↪→

163: RET

-- shift is < -4
170: PUTN origPixels, 1 --shift your pixels to the right (share pixels with

neighbour)↪→

171: SAVEN 4 --save pixels from left neighbour
172: GETN 2, 8, 0 --get pixels from left neighbour and store in

shiftPixels↪→

173: OR aux1, aux1, aux1 --clear Carry flag
174: ADDC aux1, $4 --add 4 to current shift because we read from a

neighbour↪→

175: JUMP 120
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