
A. RGB sampling algorithm
In our approach, we use the combination of RGB and

neural texture. To sample the RGB texture, we use the fol-
lowing algorithm:

Algorithm 1 RGB texture sampling algorithm

Require: RGB(size× size× 3)
Require: UV (size× size× 2)

Initialize texture with zeros
T ← zeros(texture size× texture size× 3)
C ← zeros(texture size× texture size)

Fill texels with mean value of neighbors
for ∀x, y ∈ [0..size] do

(i, j)← UV [x, y]
for ∀k,m ∈ [−1, 0, 1] do

T [i+ k, j +m] += RGB[x, y]
C[i+ k, j +m] += 1

end for
end for
T = T/C

Fill exact values in texels we don’t need to inpaint
for ∀x, y ∈ [0..size] do

(i, j)← UV [x, y]
T [i, j]← RGB[x, y]

end for

A simple filling with an average value is needed in order
to remove the gaps that appear on the texture due to the dis-
creteness of sampling grid. The described algorithm allows
us to fill them taking into account the color of neighboring
texels.

In order to avoid sampling errors caused by the inaccu-
racy of the SMPL-X fitting, we used the occlusion detector
described in Section 3.5. We have shown a more thorough
diagram of this stage in Figure 9.

B. RGB texture refinement
We have found it beneficial to perform several optimiza-

tion steps (namely 64) of RGB texture to enhance high fre-
quency details (Fig. 7 (e)) in the inference stage. To achieve
this, we use gradients from the neural renderer derived by
comparing the rendering result with the input image. Gra-
dients are applied to texels with weights that correspond to
the angles between the normal vectors and the camera di-
rection (Fig. 3). This makes sure that only texels that can
be seen in the input image are optimized with prioritiza-
tion of more frontal ones. We employed L2 and LPIPS
losses to encourage color matching, and Adversarial loss
with regularization analogous to the 4 equation to amplify
detalization.

We also apply a linear adjustment to the RGB channels
of the VQGAN decoding output to improve color matching
between front and back views after the inpainting stage:

Trgb = Trgbα+ β. (7)

In this case, all texels share the trainable parameters al-
pha and beta. We optimize them with renderer’s gradients
derived by the pixels visible in the input image. As a result,
the RGB channels of the neural texture at the VQGAN out-
put strengthen color matching with the sampled RGB tex-
ture. This helps us to minimize the seam after combining
textures (Fig. 7 (e)).

C. Architecture details

Encoder network. As an encoder network (Fig. 12a),
we have adapted the StyleGAN2 discriminator architecture
with a few changes. Namely, three images are fed to the net-
work input: RGB, segmentation mask, and single-channel
noise. Noise is introduced to provide additional freedom
to the generative model when training the GAN. The ef-
ficiency of using noise in generative neural networks has
been demonstrated by the authors of StyleGAN.

The images received at the input are concatenated by
channels and passed through a feature extractor with an ar-
chitecture equivalent to the StyleGAN discriminator con-
sisting of ResNet blocks. We modified the model head so
that it outputs a vector of length 512. This vector is then
used as the input of the StyleGAN2 generator and the pro-
posed encoder is trained end-to-end with the generator and
the renderer.

Our model is trained on RGB images at the 512 × 512
resolution. For each 3×512×512 input image, we generate
a 21 × 256 × 256 neural texture. In the texture, the first
16 channels are generated by the network G, the next three
channels are RGB channels and the remaining two channels
are the sampling and the inpainting masks.

Renderer network. Here we describe the θ renderer
(Fig. 12b). The resulting texture is applied to the SMPL-
X model and rasterized. The rasterized image has a size of
21×512×512 and is fed to a neural renderer. The renderer
takes three images as input: a rasterized SMPL-X model
with a neural texture, a UV render, and a UV mask. Each
input image is passed through a convolutional network con-
sisting of two convolutions with LeakyReLU activation and
BatchNorm layers. Output features are concatenated and
fed into a U-Net consisting of ResNet blocks. U-Net has 3
levels connected by feature concatenation. The U-Net out-
put is passed through two additional convolutional networks
to predict the RGB image of the avatar and its mask.

-

Body parts

Mask

Edges

Contours

Occlusions
Input

UV-render
Output

UV-render

Mask out

Body parts map

Figure 9: Occlusions detection. We use the body parts map as a texture to detect self-occluded areas on the avatar. From
UV-render we will get rendered body parts. We get the outer silhouette of the avatar by binarization. We detect the outlines
of the avatar with the edge detector. Based on the difference of contours and edges, we determine the outer contour of the
occlusion area and remove it from the UV-render.

D. Robustness of the method

In order to assess the robustness of our method, we com-
pared the methods qualitatively (Fig. 10) and quantitatively
(Table 3) on the additionally dataset: THuman2.0[57]. This
dataset contains 3D scans of people in diverse clothes and
complex poses. For the test, we selected 25 random people
and used the front-view renders as input for the one-shot
methods. Our method obtains the most convincing front
and back views and is resistant to complex poses and vari-
ous datasets (Fig. 10). This is also confirmed by objective
metrics (Table 3). Our method allows us to get the best met-
rics for the novel view on this additional dataset.

We also used THuman2.0 to compare with the recent
S3F [9] method for generating one-shot avatars (Fig. 11).
Our approach better preserves high-frequency detail in the
front view and produces fewer artifacts in the back view.
However, their method better restores a regular pattern on
the back and allows model relightning.

E. Additional results

We present additional results of our approach on diverse
data. On Fig. 14 we show results for input images contain-
ing different people. The top row shows an additional ex-
ample of processing of a person in loose clothing. The next
row demonstrates the high-fidelity rendering of an avatar
wearing a T-shirt with a complex high-frequency print. The
bottom two rows demonstrate the accuracy of avatar recon-
struction from images of people in unusual poses. Also,
the frames of the animation sequence show the avatars from
more varied viewpoints (e.g. top and bottom). Invariance
to the human pose is achieved through the use of a neu-

ral texture framework with a parametric model. All avatar
processing, such as restoring the back, is done in canonical
texture space.

On Fig. 13 we demonstrate an additional use case for
our one-shot approach. We used neural network inpainting
to remove the person from the original image and replace it
with an animated avatar. In this way we can create the effect
of a photo that has come to life.

One of the limitations of the current approach is the han-
dling of tissue deformations in the input image. Our method
does not modify the textures depending on the pose, which
can make the fabric look unrealistic when changing the
pose. Another limitation is the insufficient sharpness of the
edges of loose clothing. Even though dresses are rendered
correctly by our method on most frames, the edges of the
dress look unrealistic. In our future research, we would like
to focus on addressing these two shortcomings.

Same view Novel view
Method MS-SSIM ↑ PSNR ↑ LPIPS ↓ DISTS ↓ DISTS ↓ ReID ↓ KID ↓

PIFu 0,9893 28,2686 0,0474 0,0912 0,2213 0.11608 0,0924
Phorhum 0,9566 23,8915 0,0521 0,1249 0,1835 0.12516 0,0389
ARCH 0,9372 21,7770 0,0645 0,1617 0,2082 0.12193 0,1065

ARCH++ 0,9577 22,8318 0,0562 0,1067 0,1806 0.10108 0,0408
S3F 0,9706 25,6459 0,0497 0,1152 0,1928 0.11991 0,1108

StylePeople 0,9765 25,8120 0,0588 0,0830 0,1828 0.14212 0,0347
DINAR (Ours) 0,9600 22,8671 0,0568 0,0975 0,1607 0.09999 0,0250

Table 3: Metrics comparison on the THuman2.0 dataset. To demonstrate the robustness of our approach, we evaluated
the metrics on a second dataset. The table is compiled similarly to Table 1 from the main paper.

Ground

truth
PIFu Phorhum ARCH ARCH++ StylePeople DINAR

(Ours)

Figure 10: Results on the THuman2.0 dataset. We compared our method with existing approaches on an additional dataset.
Similar to the main article, our method shows the most convincing results for the new dataset.

Ground

truth
S3F DINAR

(Ours)

Figure 11: Comparison with S3F on the THuman2.0 dataset. We compared our approach with the most recent one-shot
approach: Structured 3D Features.

Concat

Conv

512 x 512 x 32

FC

SG2 ResBlock

SG2 ResBlock

SG2 ResBlock

SG2 ResBlock

4 x 4 x 256

...

υ⃗

FC

1 x 4096

1 x 512

(a) Encoder architecture

CNN CNN CNN

Concat

CNN CNN

ca
t

ca
t

ca
t

Rasterized UV UV mask

RGB Mask

(b) Renderer architecture

Figure 12: Encoder and renderer architecture. The encoder architecture is a modified architecture of the StyleGAN2
discriminator. We changed the head to get a vector of length 512. The renderer has a U-Net architecture that predicts the
RGB of an avatar from a rasterized model and UV render.

 Input Image with a person replaced by an animated avatar

Figure 13: Making photos come alive. An additional use case of our approach is to replace the person in the photo with
their animated avatar. By doing this, we can achieve the effect of an animated photo.

Input Animated avatar

Figure 14: More avatar animation examples. We present more examples of avatar animations, including those obtained
from more complex poses. The top two rows demonstrate how the approach works with people in loose clothes and clothes
with highly detailed prints.

