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1. Supplementary

1.1. More information on ChildPlay

Gaze Classes. ChildPlay is annotated with 7 non-
overlapping gaze classes to enable high quality gaze anno-
tations. These are defined as follows:

• inside-frame: when the gaze target is located within
the frame and is visible;

• outside-frame: the gaze target is outside the frame;

• gaze-shift: when the person shifts attention from one
location to the next during at least two frames. In case
of interest, shorter shifts (i.e. saccades) can be recov-
ered by identifying sudden changes in gaze points that
are annotated as inside-frame;

• occluded: the 2D gaze target is within the frame but is
totally occluded (hence cannot be annotated);

• uncertain: the gaze target cannot be determined confi-
dently (lack of salient elements in the gaze direction,
several possible targets);

• eyes-closed: used in rare cases where a child closes
their eyes (e.g. during hide-and-seek);

• not-annotated: none of the options above is applicable.

Semantics. We compare the semantics of the gaze targets
for ChildPlay and VideoAttentionTarget in Table 1. Our
ChildPlay dataset is far more balanced1, while also having
50% more frames and twice as much scene variety.

Dataset things-
person

things-
other

stuff not-
detected

VideoAttention [4] 80.85% 8.05% 3.60% 7.50%

ChildPlay 45.19% 18.66% 12.62% 23.53%

Table 1. Comparison of gaze target semantic class between Child-
Play and VideoAttentionTarget. Numbers were obtained by run-
ning a panoptic segmentation model [3] on images and retrieving
the semantic class of each annotated gaze point.

1.2. More Children Datasets

One of the major motivations behind building datasets of
children is the study of neurodevelopmental disorders ex-
hibiting symptoms in humans from an early age. For this
reason, many benchmarks studied in the literature cover
topics such as motor control, brain imaging, emotions,
speech, and social interactions. Nevertheless, most of them
are ultimately never shared due to privacy considerations
and ethics regulations [5]. We previously listed some of the
children datasets directly related to autism behaviors, in this
section, we cover a few publicly available ones that feature
pose annotations. Since the body proportions of humans
change significantly from birth to adulthood [16], it is im-
portant for younger age groups to be well represented in
research benchmarks, particularly for applications targeting
them. Table 2 summarizes the notable ones.

1.3. Point Cloud Comparison

Monocular Depth Estimation. Depth datasets can be put
under three categories:

• Absolute Depth: These datasets provide the absolute
depth of the scene. The data is recorded using sen-
sors such as LiDARS, time of flight cameras etc. ex.
KITTI [7]

* indicates equal contribution
1After manual inspection, we found that most of the not-detected

instances in ChildPlay correspond to objects that were not detected by the
segmentation, and which would fall into the things-other category.



Name Type Setting Size Annotations

Sciortino et al. [16] Video SSBD dataset + youtube 1176 images of 104 sub-
jects

2D pose keypoints

DREAM [2] Video Interactions with robot
No raw data, only extracted
features and annotations

306 hours of therapy
(102) subjects

3D pose keypoints

BabyPose [13] Video
Depth

Preterm Infant movement in
NICUs

16000 frames · 16 depth
videos · 16 patients

2D pose keypoints

SyRIP [10] Image Hybrid: real + synthetic
YouTube and Google images

Real: 700 images (140+
subjects)
Synthetic: 1000 images

2D pose keypoints

MINI-RGBD [9] Video
Depth

Synthetic: obtained by regis-
tering SMIL to real sequences
of moving infants.
Constrained environment

12000 frames · 12 se-
quences

2D and 3D key-
points

Table 2. Summary of selected pose estimation children datasets.

• Up to Scale (UTS) Depth: These datasets provide the
depth of the scene up to an unknown scale C1. The
absolute depth d∗ can be recovered from UTS depth d
as d∗−1 = C1.d

−1. ex. Megadepth [12]

• Up to Shift and Scale (UTSS) Depth: These datasets
provide the disparity of scene. They are obtained
from stereo movies and photos by computing the op-
tical flow. The absolute depth can be recovered from
the disparity D as d∗−1 = C1.(D + C2). C2, also
known as shift, depends on the camera parameters and
is crucial for reconstructing geometry preserving point
clouds. However, the shift is typically unknown. ex.
MiDaS [15]

Recent methods for monocular depth estimation [15][17]
have leveraged UTSS depth data due to it’s high diver-
sity, and shown better generalization when tested on unseen
datasets. However, they can only predict UTSS depth so
the reconstructed point clouds are not geometry preserving.
Hence, methods for gaze target prediction that use these al-
gorithms rely on course matching [6] or attempt to correct
the point cloud based on prior assumptions [1].

We study two recent methods for monocular depth es-
timation that aim to generate geometry-preserving point
clouds while still leveraging UTSS data. Wei et al. [18] pre-
dict UTSS depth and use it to construct a (distorted) point
cloud. A point cloud module then recovers the shift factor
from the distorted point cloud. On the other hand, Patakin
et al. [14] train on a mix of absolute, UTS and UTSS depth
data. The absolute and UTS depth data provide supervision
such that the algorithm predicts UTS depth.
Qualitative Results. We provide a qualitative comparison
of point clouds generated using the depth maps from Ranftl

et al. [15], Wei et al [18] and Patakin et al. [14] in Figure 1.
We observe that the point clouds generated using the depth
maps from Wei et al. and Patakin et al. generally have less
distortion of scene elements, and better maintain the depth
between objects. The point clouds from Patakin et al. in
particular seem to preserve the geometry of the scene best.
Gaze Vector Stability. To quantitatively compare the meth-
ods of Wei et al. [18] and Patakin et al. [14], we investigate
which algorithm generates more stable gaze vectors. This is
crucial as we rely on their generated gaze vectors as ground
truth. The test is based on the fact that the gaze vector for a
person (camera coordinate system) should be the same irre-
spective of their distance from the camera. We perform the
test as follows:

• We take 5 random crops of an image

• For each crop, we compute the depth (Wei et al. or
Patakin et al.) and focal length

• We then reconstruct the point cloud Pc following the
protocol defined in Section 4.2, and obtain the gaze
vector for each crop as ggt

c =
Pc

gaze−Pc
eye

||Pc
gaze−Pc

eye||

• The stability is given by the standard deviation of the
gaze vector across the crops

For a more robust estimate, we perform this procedure
for the first frame of every clip in the ChildPlay training set,
and compute the median standard deviation. The values for
the method of Wei et al. are [0.041, 0.032, 0.095] while the
values for the method of Patakin et al. are [0.026, 0.019,
0.075]. The median standard deviation for Patakin et al.
is lower, especially for the z component, indicating that it
generates more stable gaze vectors.



Figure 1. Comparison of point clouds generated using the depth maps from Ranftl et al. [15] (row 2), Wei et al. [18] (row 3) and Patakin et
al. [14] (row 4) on ChildPlay images. The point clouds generated using Patakin et al. appear to best preserve the geometry of the scene.

1.4. Training Details

Head Bounding Boxes. The provided head box annota-
tions for GazeFollow are not consistent and sometimes in-
clude the whole head, and at other times just the face of
the person. Hence, we re-extract the head boxes using a
pre-trained Yolov5 model [11] and use these for all our ex-
periments.
Eye Location. For GazeFollow, we use the annotated eye
location, and for the VideoAttentionTarget and ChildPlay
datasets we use the center of the annotated head bounding
box as the eye location.
Input Aspect Ratio. Previous methods [4][8] distort the
scene and head images to the model input size. To avoid
this, we expand the head bounding box to a square to match
the Human-Centric module’s input aspect ratio. We also
carefully crop and pad scene images to the Scene-Centric
module’s input aspect ratio during training and validation so
that there is no distortion. During the test phase, we do not
perform any cropping/padding and instead scale the longer
side of the scene image to the Scene-Centric module’s input
width.
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