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In this supplementary material, we introduce more de-
tails about Network Architecture and Training Details.
Then extensive experimental results are displayed to fur-
ther verify the superiority and effectiveness of our method.
Lastly, we present a discussion about our method.

A. Network Architecture and Training Details
A.1. Network Architecture

In the main paper, we describe the pipeline of our
method and introduce Motion Memory Net in detail.
Here, we present a more detailed architecture of Motion
Reconstruction and Audio2Mouth.

Motion Reconstruction. Motion Reconstruction con-
sists of Motion Disentanglement module and Motion
Integration module. Mouth Encoder E,, and Expression
Encoder E, in Motion Integration component map the key-
points (p, j) into a high dimensional space via a positional
encoding operation [13], and employ convolutional neural
networks (CNN) followed by multi-layer perceptrons
(MLP) to extract mouth motion feature f,, € R and
expression motion feature f. € R2%6. Then we feed
features and keypoints (p™c“, j"¢*) extracted from neutral
image into Motion Decoder D, ,,, which is composed of
4-layers CNN-MLP structure to combine and project the
features and keypoints (p™©*, ;") into reconstruction
facial representation (p, 7).

The detailed training process is shown in Fig. 1. For
each batch, we randomly select two expression (¢, j) and
two content (a, b) to obtain four samples (input images:
xh%,29% and ground truth: y*®,y7%). Expression motion
features ( f;, f2) and mouth motion features (f%, ft)
disentangled from different inputs are crossly recombined
to generate corresponding keypoints (pi-b, ji-b) and (pi-®,
jf’“). The loss functions are concretely introduced in the
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main paper.

Audio2Mouth. Identity Encoder E; comprises of 8
downsampling blocks to extract identity feature f; € R512,
We adopt the same Content Encoder E.,, and Emotion
Encoder E.n,o, as EVP [9] to generate content embedding
e. € R?% and emotion embedding e, € R'?8. By
concatenating f; and e. along the channel dimension,
Mouth Decoder D,,, produces mouth motion feature f;n via
a long short-term memory (LSTM) network [7] followed
by several ResBlock and MLP.
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Figure 1: Training process of Motion Reconstruction.
Le/m-con indicates two consistency losses, i.e, expression
consistency loss Le o, and mouth consistency 10ss Luy.con-

A.2. Training Details

For each training video, we detect the face bounding box
in the first frame and use it to crop the frame sequence



in video. All videos are finally resized to 256 x 256 and
converted to 25 frames per second. The audio is sampled
at 16kHz frequency and aligned with the video frame by
extracting 28 x 12 dim MFCC [11] features with the win-
dow size of 10 ms. Before training the whole framework,
we pre-train the Content Encoder E,, and Emotion En-
coder Fepo in Audio2Mouth module following EVP [9]. To
achieve one-shot setting, the Identity Encoder F; and Ren-
dering module are pre-trained through audio-driven talking
face task without emotion [17] on LRW [5], which contains
sufficient speakers for better generalization performance.
Moreover, we set the number of slots in Motion Memory
Net as 128. When tuning the weights of different loss func-
tions, we refer to previous works [17, 8] to help narrow
down the available range of hyper-parameters in a random
grid search. Finally, we set Ac_con, Ae-cons Aexp-mems Aalign and
Apj N Lytager as 0.01, 0.01, 0.1, 0.1 and 1, respectively.

B. More Results
B.1. Experiment Settings

Comparison Experiment Setting. We evaluate each
method with their publicly available pre-trained models
except for MEAD [16], which is a target-specific model, so
we reproduce MEAD according to the descriptions in their
original paper on test subjects in MEAD dataset [16]. For
each comparing method, we feed them with the same audio
and reference image for a fair comparison, while some
methods require additional input for head pose and emotion
control, we follow the original papers to pre-process data,
achieving their respective optimal performance.

User Study Setting. For each emotion, we select 4
groups of inputs, where audios are randomly selected
in MEAD dataset and reference images are selected in
CREMA-D [3] and CFD dataset [12]. In addition, we also
evaluate the performance of real data in MEAD dataset.
Therefore, we generate 32 (4x 8 emotions) videos for
each method and ground truth while generating 24 (4x
6 emotions) videos for ETK [6], which only considers
6 emotion categories. Videos are shuffled and randomly
presented to participants. Participants are asked to classify
the emotion perceived from the video and score for each
video from 1 (worst) to 5 (best) on lip-synchronization,
emotion naturalness and video quality.

B.2. More Experimental Results

Results of the Motion Reconstruction. To verify the ef-
fectiveness of Motion Reconstruction module, we randomly
select images with different expressions and mouth shapes
as expression sources and mouth sources. Then the images
and the neutral image of the same subject are fed into Mo-
tion Reconstruction module for crossly reconstructing the

Ground Truth

Neutral Image

Expression Source  Mouth Source Result

Figure 2: Results of Motion Reconstruction. We show
two examples of our results with the same expression as
the expression source and the same mouth shape as mouth
source.

results. For intuitive comparison, we generate the ground
truth images via pseudo label generation strategy as de-
scribed in Sec. 3.2. As displayed in Fig. 2, the results re-
constructed by Motion Reconstruction module are similar
to the ground truths with the same expressions and mouth
shapes as expression sources and mouth sources, respec-
tively. Please note that the mouth area of the results not only
contains the same content information as mouth source, but
also performs the same emotion as expression source in de-
tail like mouth corners, as pointed out by red arrows. The
results indicate that the Motion Reconstruction module ef-
fectively disentangles expression and mouth shape from in-
herently coupled face and globally integrate them to per-
form expression overall on the face.

Emotion Manipulation. We achieve emotion manipu-
lation by interpolating between emotion embedding ex-
tracted from audio with ‘disgusted’ and ‘surprised’ emo-
tions. Specifically, we extract content embedding from the
same audio and combine it with interpolated emotion em-
beddings as queries to calculate the value address in Motion
Memory Network and generate emotional talking faces. As
demonstrated in the top row of Fig. 3, the facial emotion
dynamics are smoothly transited from disgust to surprise.
Meanwhile, other facial factors related to emotion like head
pose and mouth corner also transform with the change of
interpolation weight «, which indicates that expression mo-
tion features contain all facial factors about expression as
mentioned in the main paper. The bottom row of Fig. 3
demonstrates that the corresponding value addresses for
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Figure 3: Emotion interpolation and value addresses. Top row shows the results generated by interpolating between
‘disgusted’ emotion embedding and ‘surprised’” emotion embedding, where « stands for interpolation weight. Bottom row
presents the corresponding value address for each slot in Motion Memory Net.
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Figure 4: More results on celebrities.

each slot also linearly transit with the facial emotion dy-
namics transformation overall. The results suggest that the
Motion Memory Net well stores expression motion features
aligned with emo-mouth features to ensure the accuracy of
emotion category and the consistency between expression
and mouth shape. Besides, the results also suggest that
more diverse expressions can be generated from the combi-
nation of the different expression features stored in memory.
Moreover, we also test our method on celebrities shown in
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Figure 5:
one-shot emotional talking face methods:
Speaker(W-A-S) and ECG.

Comparisons with person-specific and
Write-A-

Fig. 4, which further verifies the effectiveness of the pro-
posed method.

More Comparison Results. We further conduct a com-
parison between our method and two other emotional talk-
ing face methods: Target-specific Write-a-speaker [10] and
one-shot ECG [15]. As the codes and pre-trained mod-
els for both methods have not been made public, we only
can extract an emotional video clip from the provided demo
video for comparison. The qualitative comparison results
are presented in Fig. 5. Our method outperforms Write-a-
speaker, a person-specific model which is trained on suffi-
cient data of the target speaker, by generating more vivid
emotional animation results. Moreover, unlike ECG, which
fine-tunes their network on a single image of the target face,
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Figure 6: Confusion matrices for perceived expression
recognition (%) for 8 emotion categories. The labels on
the left side represent ‘Angry’, ‘Contempt’, ‘Disgusted’,
‘Fear’, ‘Happy’, ‘Neutral’, ‘Sad’ and ‘Surprised’, respec-
tively.
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Figure 7: Ablation study on the number of slots. We ex-
plore the effect of different numbers of memory slot on the
final performance.

our method synthesizes more realistic expressions and pre-
serves more identity information without any fine-tuning.
In addition, We offer more comparison to EAMM. Specifi-
cally, CSIM, FID and emotion accuracy are calculated to as-
sess identity preservation, image quality and emotion repre-
sentation of generated videos. Tab. 2 shows that our method
outperforms EAMM among all metrics.

User Study. Due to various perceptions among individuals,
it is challenging to achieve consensus on scores, especially

Method/Metric CSIMT  FID]  Emotion Accuracy?
EAMM 0.699  83.396 63.36%
Ours 0.753  59.718 72.13%

Table 1: More comparison to EAMM.

when dealing with facial expression analysis [2]. To ac-
commodate the variance of user opinions, we compute the
mean and standard deviation of the scores and present an
overview of the user study results in the main paper. Here,
we additionally show the detailed emotion accuracy for our
method and ground truth (GT). The confusion matrices for
perceived expression recognition are illustrated in Fig. 6. In
confusion matrix, each row denotes an emotion class and
the values in this row represent the average probabilities
that the videos with row emotion is recognized as the col-
umn emotions by the participants. We observe that we get
high emotion accuracy on ‘angry’, ‘contempt’, ‘happy’ and
‘neutral’ emotions, while getting lower on ‘disgusted’ and
‘fear’. Concretely, 27% videos with ‘disgusted’ emotion
and 16% videos with ‘fear’ emotion are miscategorized as
‘angry’ and ‘neutral’. Note that the results on GT also ap-
pear the similar inaccuracy on these emotion classes. We
argue that it is extremely tough for people to recognize and
perform ‘disgusted’ and ‘fear’ emotions.

Ablation Study. In this section, we conduct a set of ex-
periments to investigate the effect of slot number selection
on the final performance. Particularly, we set the slot num-
ber as 32, 64, 128 and 256 to conduct experiments, respec-
tively. In addition, we drive the image of target subject with
the video in MEAD through FOMM [14] as the ground truth
for intuitive comparison. The qualitative results are given
in Fig. 7, and the top row displays the reference image and
ground truth frames of video in MEAD dataset. When the
number of slot increases from 32 to 64, the expression be-
come obvious but still unstable. We argue that the memory
space is too limited to store sufficient emo-mouth feature
and expression motion feature pairs. However, although
a high expression performance can be achieved when the
number of slots increases to 256, the mouth shape match-
ing between results and ground truth gets worse, which may
stem from excessive attention on expression but deficient on
mouth shape. Accordingly, we empirically select the num-
ber of memory slots as 128 to obtain a relatively balanced
trade-off between expressions and mouth shapes.

Comparison on computational cost. We conduct an
analysis of the model parameters size and the average time
required to generate a single frame. To ensure a fair com-
parison, we run all models on an NVIDIA GeForce GTX
3090 with 24GB memory and record the results in Tab. 2.



Metric/Method ETK [6] MEAD [16] EAMM[8] Ours
Computational cost (MB)  158.87 365.65 536.79 438.17
Inference time (S/Frame) 0.009 0.047 0.149 0.030

Table 2: Computational cost and inference time for each
method.

Metric/Paper ATVG [4] Yi [18] PC-AVS[19] EAMM [8]
ATVG’s SSIM 0.86 0.73 0.81 0.69

Table 3: Inconsistent SSIM score reported by differ-
ent papers on the same method (ATVG) and same
dataset(LRW).

As observed, ETK consumes the lowest computational re-
sources, as it generates results with a resolution of 128 x 128
only. Both EAMM and our method are based on keypoint
and dense flow field; however, EAMM employs an addi-
tional network to extract emotion feature from videos. In
contrast, we store aligned emo-mouth features and expres-
sion features in a Memory Network, which consumes fewer
computation resources and achieves faster inference time.
Opverall, our method is efficient and runs in reasonable time
with reasonable cost.

C. Discussion

Quantitative comparison. We notice the inconsistent
scores bewteen the displayed metics values in our paper
and the one reported in the original papers. We evalu-
ate our method and comparing methods following previous
works [19, 8], which also appear inconsistent score cases in
Tab. 3, where we list the ATVG’s [4] SSIM score on LRW
dataset reported by different papers. We attribute the in-
consistent scores to several reasons: 1. Different train/test
splits results in different videos for calculating the score,
which inevitably introduce the errors. 2. Randomly select-
ing one frame per video as input for evaluation may lead to
score variation. However, we consider these variations to
be normal and negligible. This is because we verify that the
current evaluation method [19, 8] is able to ensure that the
scores fall within 95% confidence interval, when treating
all frames of the test set as a whole, using z-test. 3. Differ-
ent face cropping manners and metrics calculation codes
unavoidably cause the inconsistency. We give an intuitive
example in Fig 8, where we crop the generated videos and
ground truth video into the resolution of 224 x 224 (Fig. 8
right) and 256 x 256 (Fig. 8 left), respectively. We calculate
the SSIM of two pairs of images to verify score difference
caused by different croppings: 0.655 (left), 0.688 (right).
This indicates that different cropping methods indeed cause
the inconsistent scores (higher when cropping lower reso-
lution). To mitigate these errors, we use the same way to
process the face images and calculate metrics when evalu-

ating all methods.

4 [
Ground Truth (256%) Ours (256%)

Figure 8: Source images and cropped images.

Cropped GT (224%) Cropped Ours (224%)

Despite slight differences in scores, the ranking of score
between methods in our paper is consistent with original pa-
pers. Besides, we also conduct qualitative comparison and
user study, which all validate the superiority of our method.
To sum up, our experimental results are reliable.

Emotion representation. There are several ways to rep-
resent emotions including discrete emotion representation
and dimensional emotion representation. Previous work [1]
has suggested whether a dimensional or a discrete emotion
representation is most appropriate based on Valence Focus
and Arousal Focus theory. In this work, we utilize a di-
mensional e, € R'28 to represent the emotion information
extracted from audio [9]. Concretely, we infer expression
features fe;em from mouth features fm and emotion em-
beddings e., which is a sequence. To make the subjects per-
form more diverse and smooth expressions and head poses,
dimensional representation (e, € R!2%) is more suitable
than discrete emotion representation (e.g., one-hot vector
v € R¥/RS in MEAD [16]/ECG [15]), which typically
provides fixed features for one emotion category. How-
ever, during our user study experiment, the discrete emotion
representation is more suitable for participants to identify
which expression the video performs due to its high arousal
focus requirement [1].
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