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A. Additional Implementation Details

Network Architecture. We use the multi-resolution hash-
grid encoder [4] and shallow MLPs to cosntruct the first
stage’s NeRF network. The density grid Egeo use 16 reso-
lution levels with each level containing 1-channel features,
and a 2-layer MLP with 32 hidden channels is used to con-
vert the features into density. The color grid Eapp use 16 res-
olution levels with each level containing 2-channel features.
A 3-layer MLP with 64 hidden channels convert the color
features into 3-channel diffuse color and 3-channel specular
features. The specular features along with view directions
are fed into a 2-layer MLP with 32 hidden channels to pro-
duce the view-dependent 3-channel specular color.
Visibility culling & Mesh cleaning. In the first stage of
our approach, we adopt the Marching Cubes algorithm to
extract a coarse mesh from NeRF’s density field. To reduce
the size of the resultant mesh, we incorporate a visibility
culling mechanism to eliminate vertices and faces that are
invisible from all training cameras. More specifically, we
cast rays from each training camera and calculate their in-
tersection with the surface. In doing so, we trace the cor-
responding face and label it as visible. However, in situa-
tions where the training cameras are sparsely located, this
approach may result in excessive culling. To address this
issue, we apply dilation to the visible faces using a prede-
termined kernel size. For the NeRF-synthetic dataset, we
utilize a kernel size of 5, while for the LLFF and Mip-
NeRF 360 dataset, we increase it to a larger value of 50,
given that training cameras may be sparse for the far back-
ground. The mesh can be further post-processed to remove
floaters based on the diameter and number of faces for each
connected component. We also clean the mesh by merg-
ing close vertices, removing duplicated faces, and repair-
ing non-manifold vertices and faces [2]. In essence, these
methods help to remove unnecessary vertices and faces to
maintain a reasonably small mesh size.
Baking. After completing the two-stage training, we con-
vert the appearance network into texture images for real-
time rendering. Initially, the resolution of the texture im-

age is set to 4096 for the center mesh in [−1, 1]3. Sub-
sequently, for meshes of outdoor regions, the texture reso-
lution is decreased by a power of 2, with a minimum res-
olution of 1024. To eliminate seam-like texture artifacts
caused by UV unwrapping [5], we repair the border of each
connected component by out-painting 1 pixel on the texture
image. The floating-point diffuse color and specular fea-
tures in [0, 1] range are quantized into 8-bit precision PNG
images. Following MobileNeRF [1], we found that the ren-
dering quality is not significantly affected through baking.
Hyper-parameters. Since different types of dataset (e.g.,
from objects without background to unbounded scenes) can
require very different hyper-parameters to maximize perfor-
mance [3, 6], we explore different set of hyper-parameters,
especially for loss weights. By default, we set the weight
of LTV to 1× 10−8, the weight of Lsmooth to 1× 10−3, and
the weight of Loffset to 0.1. The other loss weights are de-
fault to 0 unless specified. For the NeRF-synthetic dataset
and the LLFF dataset, we use all the default weights. For
the Mip-NeRF 360 dataset, we set the weight of Lentropy to
1 × 10−3. The training steps for stage 1 is also set differ-
ently. We train 30, 000 steps for the NeRF-synthetic dataset,
but we found 10, 000 steps are enough for the LLFF and
Mip-NeRF 360 datasets to converge. For the iterative mesh
refining algorithm, we apply the subdivision and decimation
at {0.1, 0.2, 0.3, 0.4, 0.5, 0.7} ratio of total training steps.
The minimum edge length for subdivision is set to 1% of
the diagonal of the bounding box of the mesh (which eqauls
to 0.02

√
3 in our case). We decimate 10% of the faces with

an error above edecimate, and remesh them with an average
edge length of 2% of the diagonal of the bounding box of
the mesh (0.04

√
3).

B. Additional Experimental Results
B.1. Additional Qualitative Results

Relighting. Although the lighting is baked into textures in
our methods, we aim to showcase that our mesh is proficient
enough to execute relighting for a scene captured in pre-
dominantly ambient lighting conditions. Figure 1 exhibits



Figure 1: Relighting. We relight the mesh with only the diffuse texture with a point light source.
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Figure 2: Adaptive Face Density. Our iterative mesh re-
fining allows adaptive face density learned from data. It
enhances the surface quality and reduces face counts.

#Faces:   78,760                                  19,689                                   4,921

Figure 3: Levels of details (LOD) simulation. We deci-
mate the reconstructed mesh to create different LODs.

a reconstructed mesh which has been relit with a rotating
point light source. Only the diffuse texture is utilized.
Levels of detail (LODs) simulation. Our textured surface
mesh is demonstrated to be suitable for supporting LODs
in Figure 3. This can solely be accomplished with an accu-

Figure 4: Limitations. We visualize some examples about
the limitation of our method.

rate surface mesh, as decimation is primarily designed for
minimizing geometric error.
Additional Visualizations. We also provide more visual-
ization on scenes with background in Figure 6. In Figure 2,
we show more visualizations on the iterative mesh refining.
In Figure 5, we visualize the effect of the TV loss on mesh
quality.
Limitations. Our method’s limitations are illustrated in
Figure 4. As we solely perform single-layer rasterization,
our approach is incapable of handling semi-transparent ob-



w/ TV (PSNR = 30.65)                                       w/o TV (PSNR =31.03)

Figure 5: Ablation on TV loss. We remove some surface to
show internal geometry.

jects such as glass bottles, and tends to learn an opaque tex-
ture. Animal fur, which usually requires volumetric repre-
sentation for better simulation, is difficult to emulate due to
the smoothness regularization of the mesh surface. Lastly,
since the appearance network is relatively small, it can-
not model intricate view-dependent effects. Therefore, our
model tends to manipulate vertices to simulate the effects,
which results in a lack of smoothness and inaccurate geom-
etry. We are hopeful for improved decomposition of surface
and materials to overcome this issue.

B.2. Additional Quantitative Results

The per-scene rendering quality evaluation results are
listed in Table 2, Table 3, and Table 4. In Table 1, we per-
form more ablation on the regularization losses.
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Figure 6: More Visualizations. We visualize the mesh and diffuse color of more scenes from the Mip-NeRF 360 and LLFF
datasets.



PSNR↑ SSIM↑ LPIPS↓
Ours 22.36 0.493 0.478
Ours w/o Lentropy 22.32 0.492 0.481
Ours w/o LTV 22.22 0.486 0.483

Table 1: We ablate the regularizations on the Mip-NeRF 360 dataset.

Metric Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
Ours (volume)

PSNR↑
33.87 25.20 30.24 35.09 33.66 27.70 32.65 28.59 30.88

Ours (mesh) 31.93 24.80 29.81 34.11 32.07 25.45 31.25 28.69 29.76
Ours (mesh w/o Lsmooth) 34.25 25.04 30.08 35.70 34.90 26.26 32.63 29.47 31.04
Ours (volume)

SSIM↑
0.977 0.929 0.970 0.974 0.972 0.930 0.981 0.872 0.951

Ours (mesh) 0.964 0.927 0.967 0.970 0.957 0.896 0.974 0.865 0.940
Ours (mesh w/o Lsmooth) 0.978 0.926 0.967 0.974 0.977 0.906 0.979 0.875 0.948
Ours (volume)

LPIPS↓
0.049 0.108 0.064 0.052 0.055 0.091 0.047 0.163 0.079

Ours (mesh) 0.046 0.084 0.045 0.060 0.047 0.107 0.042 0.145 0.072
Ours (mesh w/o Lsmooth) 0.031 0.084 0.046 0.058 0.025 0.111 0.038 0.138 0.066

Table 2: Rendering quality on the NeRF-synthetic dataset.

Metric Room Fern Leaves Fortress Orchids Flower Trex Horns Mean
Ours (volume)

PSNR↑
31.12 25.47 20.58 30.45 20.54 27.19 28.15 27.83 26.42

Ours (mesh) 29.24 23.94 19.22 28.02 19.08 26.48 25.80 26.25 24.75
Ours (mesh w/o Lsmooth) 30.03 23.21 18.71 28.96 19.34 26.10 26.41 26.40 24.90
Ours (volume)

SSIM↑
0.939 0.802 0.700 0.887 0.668 0.823 0.910 0.866 0.824

Ours (mesh) 0.914 0.751 0.644 0.765 0.602 0.879 0.868 0.819 0.780
Ours (mesh w/o Lsmooth) 0.923 0.709 0.621 0.859 0.607 0.797 0.879 0.831 0.778
Ours (volume)

LPIPS↓
0.201 0.248 0.253 0.167 0.270 0.204 0.180 0.223 0.218

Ours (mesh) 0.246 0.303 0.321 0.270 0.314 0.204 0.215 0.260 0.267
Ours (mesh w/o Lsmooth) 0.254 0.342 0.358 0.203 0.312 0.224 0.214 0.259 0.271

Table 3: Rendering quality on the LLFF dataset.

Metric Bicycle Garden Stump Mean
Ours (volume)

PSNR↑
20.88 23.41 22.70 22.33

Ours (mesh) 22.16 22.39 22.53 22.36
Ours (mesh w/o Lsmooth) 22.28 22.86 23.08 22.74
Ours (volume)

SSIM↑
0.469 0.567 0.578 0.538

Ours (mesh) 0.470 0.500 0.508 0.493
Ours (mesh w/o Lsmooth) 0.479 0.551 0.540 0.523
Ours (volume)

LPIPS↓
0.545 0.419 0.478 0.481

Ours (mesh) 0.510 0.434 0.490 0.478
Ours (mesh w/o Lsmooth) 0.509 0.402 0.459 0.457

Table 4: Rendering quality on the Mip-NeRF 360 dataset.


