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In this supplemental document, we analyze the style
adaptation with respect to the length of the reference video
(see Sec. 1) and show an ablation study on 2-stage style-
adaptation (Sec. 2), provide additional details of the pro-
posed architecture (see Sec. 3), and discuss ethical consid-
erations in Sec. 4.

1. Impact of Data to Style-Adaptation:
To analyze the impact of data on the style adaptation pro-

cess, we randomly sample (1, 4, 10, 20) sequences from the
train set of the VOCA test subjects and perform our style
adaption. Each sequence contains about 3 − 5 seconds of
data. In Tab. 1, we observe that the performance on the
quantitative metrics increase with the number of reference
sequences. As mentioned in the main paper, even an adapta-
tion based on a single sequence results in a significantly bet-
ter animation in comparison to the baseline methods. This
highlights the impact of style on the generated animations.

Fig. 1 illustrates the lip distance curve for one test se-
quence used in this study. We observe that the lip distance
with more reference data better fits the ground truth curve.

No. Seq. Lip-Sync ↓ Lip-max ↓ Llip
2 ↓ Lface

2 ↓
1 1.48 3.96 0.1 0.9
4 1.44 3.85 0.1 0.89

10 1.43 3.55 0.09 0.76
20 1.35 3.43 0.09 0.69

Table 1: Ablation of the style adaptation w.r.t. the amount
of reference sequences used. With an increasing number
of data, the quantitative metrics improve. Each sequence is
3− 5s long.

2. Ablation study on 2 stage Style-Adaptation:
Our proposed style adaptation has two stages as ex-

plained in the main paper Sec. 3.3. In the first step, we

Method Lip-Sync ↓ Lip-max ↓ Llip
2 ↓ Lface

2 ↓
Initial Style 1.95 4.8 0.12 0.85
Style code optimization 1.81 4.53 0.12 0.79
Motion basis refinement 1.44 3.85 0.1 0.89

Table 2: Quantitative analysis of the different stages in our
style-adaption pipeline. Note the ablation study is con-
ducted on our proposed architecture and style-adaption is
performed on 4 sequences.

optimize for the style code and then we refine the motion
basis and style code together. In Fig. 2, we show an exam-
ple of the style adaptation by evaluating the lip distances
throughout a sequence with a motion decoder at initializa-
tion, with optimized style code, and with a refined motion
basis. While the lip distance with the generalized motion
decoder is considerable, it gets significantly improved by
the consecutive steps of style adaptation. After style code
optimization, we observe that the amplitude and frequency
of the lip distance curves start resembling the ground truth.
From Tab. 2, we observe an increase in quantitative per-
formance on Lip-Sync and Lip-max metrics. Refining the
motion basis further improves the lip distance, and it is able
to capture facial idiosyncrasies, like asymmetrical lip de-
formations. Quantitatively, it improves the metrics in the
lip region significantly. However, as discussed in the main
paper Sec. 5, we see a slight increase in the overall face
error, when style-adaption is performed on fewer sequences
(∼ 20s). This also gets improved when slightly more data
(∼ 50s) is provided.

3. Architecture Details

3.1. Audio Encoder:

Similar to Faceformer[3], our audio encoder is built upon
the Wav2Vec 2.0 [1] architecture to extract temporal audio
features. These audio features are fed into a linear interpo-
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Figure 1: With an increasing number of reference data samples for style adaptation, the lip distance throughout a test sequence
of VOCAset is approaching the ground truth lip distance curve.

Figure 2: Analysis of style adaptation in terms of lip distance on a test sequence of the VOCAset [2] (reference in red).
Starting from an initial talking style from the training set (blue), we consecutively adapt the style code (green) and the motion
basis of the motion decoder (purple).

lation layer to convert the audio frequency to the motion fre-
quency. The interpolated outputs are then fed into 12 iden-
tical transformer encoder layers with 12 attention heads and
an output dimension of 768. A final linear projection layer
converts the audio features from the 768-dimension features
to a 64-dimensional phoneme representation.

3.2. Auto-regressive Viseme Decoder:

Our auto-regressive viseme decoder is built on top of
traditional transformer decoder layers [5]. We use a zero
vector of 64-dimension as a start token to indicate the start
of sequence synthesis. We first add a positional encoding
of 64-dimension to the input feature and fed it to decoder

layers in the viseme decoder. For self-attention and cross-
modal multi-head attention, we use 4 heads of dimension
64. Our feed forward layer dimension is 128.

Multi-Head Self-Attention: Given a sequence of posi-
tional encoded inputs ĥt, we use multi-head self-attention
(self-MHA), which generates the context representation of
the inputs by weighting the inputs based on their relevance.
The Scaled Dot-Product attention function can be defined
as mapping a query and a set of key-value pairs to an out-
put, where queries, keys, values and outputs are vectors [5].
The output is the weighted sum of the values; the weight is
computed by a compatibility function of a query with the



corresponding key. The attention can be formulated as:

Attention(Q,K, V ) = σ(
QKT

√
dk

)V, (1)

where Q,K, V are the learned Queries, Keys and Values,
σ(·) denotes the softmax activation function, and dk is the
dimension of the keys. Instead of using a single atten-
tion mechanism and generating one context representation,
MHA uses multiple self-attention heads to jointly generate
multiple context representations and attend to the informa-
tion in the different context representations at different po-
sitions. MHA is formulated as follows:

MHA(Q,K, V ) = [head1, ...., headh] ·WO, (2)

with headi = Attention(QWQ
i ,KWK

i , V WV
i ), where

WO,WQ
i ,WK

i ,WV
i are weights related to each input vari-

able.
Audio-Motion Multi-Head Attention The Audio-Motion
Multi-Head attention aims to map the context representa-
tions from the audio encoder to the viseme representations
by learning the alignment between the audio and style-
agnostic viseme features. The decoder queries all the exist-
ing viseme features with the encoded audio features, which
carry both the positional information and the contextual in-
formation, thus, resulting in audio context-injected viseme
features. Similar to Faceformer [3], we add an alignment
bias along the diagonal to the query-key attention score to
add more weight to the current time audio features. The
alignment bias BA(1 ≤ i ≤ t, 1 ≤ j ≤ KT ) is:

BA(i, j) =

{
0 if (i = j),

−∞ otherwise.
(3)

The modified Audio-Motion Attention is represented as:

Attention(Qv,Ka, V a, BA) = σ(
Qv(Ka)T√

dk
+BA)V a,

(4)
where Qv are the learned queries from viseme features, Ka

the keys and V a the values from the audio features, σ(·) is
the softmax activation function, and dk is the dimension of
the keys.

3.3. Motion Decoder:

The motion decoder aims to generate 3D facial anima-
tions ŷ1:T from the style-agnostic viseme features v̂1:T and
a style embedding Ŝi. Specifically, our motion decoder
consists of two components, a style embedding layer and
a motion synthesis block. The style linear layer takes a one-
hot encoder of 8-dimension and produce a style-embedding
of 64-dimension. The style-embedding is added to in-
put viseme features and fed into 4 successive linear layers

which have a leaky-ReLU as activation. The output dimen-
sion of the 4-layer block is 64 dimensional. A final fully
connected layer maps the 64-dimension input features to the
3D face deformation described as per-vertex displacements
of size 15069. This layer is defining the motion deforma-
tion basis of a subject and is adapted based on a reference
sequence.

Training Details: We use the ADAM optimizer with a
learning rate of 1e-4 for both the style-agnostic trans-
former training and the style adaptation stage. During the
style-agnostic transformer training, the parameters of the
Wave2Vec 2.0 layers in the audio encoder are fixed. Our
model is trained for 300 epochs, and the best model is cho-
sen based on the validation loss. During the style-adaptation
stage, we first generate the viseme features and keep them
fixed during the style adaptation stage. Then, we optimize
for the style embedding for 300 epochs. Finally, the style-
embedding and final motion deformation basis is refined
for another 300 epochs. For generalized training, we use
the following weights λMSE = 1.0, λvel = 10.0, and
λlip = 5.0. For style-adaption on the VOCAset and ex-
ternal sequence, we use the λvel = 1.0 and λvel = 10.0
for best performance. Additionally, based on the speaking
style of the target actor, we observed that training for longer
epochs tends to improve expressiveness. However, for stan-
dard evaluation, we perform style-adaption for 300 epochs
as explained earlier.

4. Broader Impact

Our proposed method aims at the synthesis of realistic-
looking 3D facial animations. Ultimately, these animations
can be used to drive photo-realistic digital doubles of people
in audio-driven immersive telepresence applications in AR
or VR. However, this technology can also be misused for
so-called DeepFakes. Given a voice cloning approach, our
method could generate 3D facial animations that drive an
image synthesis method. This can lead to identity theft, cy-
ber mobbing, or other harmful criminal acts. We believe
that conducting research openly and transparently could
raise awareness of the misuse of such technology. We
will share our implementation to enable research on digi-
tal multi-media forensics. Specifically, synthesis methods
are needed to produce the training data for forgery detec-
tion [4].
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