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1. Overview
This supplementary document is organized as follows:

• We present detailed experimental settings and hyperparameters for image classification, object detection and segmen-
tation, and image quality experiments in Sec. 2.

• Additional experimental results of MULLER resizer with respect to comparisons with previous works and the gener-
alization are provided in Sec. 3.

• The discussion of the anti-aliasing effect as well as a comprehensive visualization are given in Sec. 4 and Sec. 5.

2. Experimental Settings
2.1. ImageNet Classification

We provide the experimental settings for both pre-training and fine-tuning MaxViT models on ImageNet-1K, detailed
in Tab. 1. All the MaxViT variants employed similar hyperparameters except for that the the stochastic depth rate was tuned
for each setting. It should be noted that we first pre-trained the backbone on ImageNet-1k/-21k/JFT with 300/90/14 epochs at
a resolution of 224×224. Subsequently, the backbone was jointly fine-tuned with MULLER plugged-in at a higher resolution
for an additional 30 epochs.

2.2. Object Detection and Segmentation

We evaluated MaxViT on the COCO2017 [3] object bounding box detection and instance segmentation task. The dataset
comprises 118K training and 5K validation samples. All MaxViT backbones were pretrained on the ImageNet-1k dataset
at a resolution of 224 × 224 following the same training protocol detailed in Sec. 2.1. These pretrained checkpoints were
then used as the warm-up weights for fine-tuning on the detection and segmentation tasks. Note that for both tasks, the
input images were resized to 896 × 896 before being fed into the MULLER resizer. The backbone was actually receiving a
640 × 640 resolution images for generating the box proposals. The training was conducted with a batch size of 256, using
the AdamW [4] optimizer with learning rate of 3e-3, and stochastic depth of 0.3, 0.5, 0.8 for MaxViT-T/S/B backbones,
respectively.

2.3. Image Quality Assessment

We trained and evaluated the MaxViT model on the AVA benchmark [5]. Similar to [2, 7]. We pre-train MaxViT for
resolutions: 224×224. Then we initialized the model with ImageNet-1K 224×224 pre-trained weights and fine-tune it with
MULLER resizer. The weight and bias momentums are set to 0.9, and a dropout rate of 0.75 is applied on the last layer of
the baseline network. We use an initial learning rate of 1e-3, exponentially decayed with decay factor 0.9 every 10 epochs.
We set the stochastic depth rate to 0.5.
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Hyperparameter
ImageNet-1K ImageNet-21K JFT-300M

Pre-train Fine-tune(+MULR) Pre-train Fine-tune(+MULR) Pre-train Fine-tune(+MULR)
(MaxViT-T/S/B/L) (MaxViT-B/L/XL) (MaxViT-B/L/XL)

Stochastic depth 0.2/0.3/0.4/0.6 0.3/0.5/0.7/0.95 0.3/0.4/0.6 0.4/0.5/0.9 0.0/0.0/0.0 0.1/0.2/0.1
Center crop True False True False True False
RandAugment 2, 15 2, 15 2, 5 2, 15 2, 5 2, 15
Mixup alpha 0.8 0.8 None None None None
Loss type Softmax Softmax Sigmoid Softmax Sigmoid Softmax
Label smoothing 0.1 0.1 0.0001 0.1 0 0.1
Train epochs 300 30 90 30 14 30
Train batch size 4096 512 4096 512 4096 512
Optimizer type AdamW AdamW AdamW AdamW AdamW AdamW
Peak learning rate 3e-3 5e-5 1e-3 5e-5 1e-3 5e-5
Min learning rate 1e-5 5e-5 1e-5 5e-5 1e-5 5e-5
Warm-up 10K steps None 5 epochs None 20K steps None
LR decay schedule Cosine None Linear None Linear None
Weight decay rate 0.05 1e-8 0.01 1e-8 0.01 1e-8
Gradient clip 1.0 1.0 1.0 1.0 1.0 1.0
EMA decay rate None 0.9999 None 0.9999 None 0.9999

Table 1. Detailed hyperparameters used in ImageNet-1K experiments. Multiple values separated by ‘/’ are for each
model size respectively.

3. Additional Experimental Results
3.1. Comparisons to Previous Resizer

We compare the proposed MULLER resizer against the previous learned resizer with residual convolution blocks [8]. As
shown in Tab. 2, fine-tuning with MULLER performs as effective as, and sometimes better than the previous heavier residual
resizer. Furthermore, we note that MULLER is two orders-of-magnitude cheaper in inference cost (FLOPs), which further
saves up to 52% training cost on TPUs, depending on the model size. Thus, MULLER is a promising ‘green’ machine
learning model that can be easily integrated into various applications without incurring additional costs. Another benefit of
MULLER over [8] is that MULLER is restricted to generating images that are more comprehensible to humans, despite being
trained only for machine vision. This may be attributed to the bandpass design of the multilayer Laplacian filters employed
in MULLER.

Model Size Infer cost
(FLOPs)

Train cost
(TPUv3 hrs)

top-1
accuracy

MaxViT-T 224 5.6B - 83.62
+Residual [8]512→224 224 6.8B 2.8 83.93
+MULLER512→224 224 5.6B 1.9 83.95
MaxViT-S 224 11.7B - 84.45
+Residual [8]512→224 224 12.9B 4.2 84.95
+MULLER512→224 224 11.7B 2 85.95
MaxViT-B 224 23.4B - 84.95
+Residual [8]512→224 224 25.4B 6 85.48
+MULLER512→224 224 23.4B 3.5 85.58
MaxViT-L 224 43.9B - 85.17
+Residual [8]512→224 224 45.1B 7.7 85.73
+MULLER512→224 224 43.9B 5.0 85.68

Table 2. Performance comparison against previous residual resizer [8].



3.2. Transferability Experiments.

We also examine the generalization ability of the learned resizer across different MaxViT model variants. Specifically, we
take the learned resizer parameters from one MaxViT variant, and directly test it on another variant. As can be seen in Tab. 3,
the learned resizer generalizes very well across different MaxViT model scales. The average top-1 accuracy drop is less than
0.06 when using different learned weights, indicating great transferrability of the MULLER resizer.

Model MaxViT-T MaxViT-S MaxViT-B MaxViT-L

MULLERM-T 83.95 84.91 85.61 85.68
MULLERM-S 83.96 84.95 85.61 85.68
MULLERM-B 83.97 84.89 85.58 85.69
MULLERM-L 83.95 84.91 85.61 85.68

Table 3. Cross-model validation of the MULLER resizer for ImageNet-1K on MaxViT variants. These values represent
the top-1 accuracy of a given backbone tested with various MULLER resizers.

3.3. The Effect of Base Resize Method.

We conduct another ablation study to inspect the effects of the base resize method used inside MULLER. It is worth
highlighting that this is the resizer used in MULLER, and it may or may not be different than the ‘default resizier’ mentioned
in the main paper. Since we run all the experiments on TPU devices, we have found that only bilinear and nearest
resizers are compilable. As demonstrated in Tab. 4, using nearest method as the base resizer yields similar performance as
compared to the default bilinear method. We thus hypothesize that the choice of the base resize method used in MULLER
does not significantly affect the performance of the model.

Model Resize method TPU compilable? Top-1 acc.

MaxViT-B Bilinear Yes 85.58
Nearest Yes 85.54
Bicubic No -
Lanczos No -

Table 4. Effects of base resize method used in MULLER.

4. On Anti-Aliasing
We now investigate the effects of anti-aliasing on the input images to MULLER resizer. Our experiments reveal that while

removing anti-aliasing does not affect the overall performance gain obtained by MULLER, the learned parameters may differ.
As shown in Tab. 5, the learned parameters for each backbone have a slight shift in the weights and biases. However, these
place no effects on the fine-tuning performances.

We do observe that anti-aliasing may impact the behavior of the learned resizer in terms of visualizations. For instance,
as shown in Fig. 1, (a) when anti-aliasing is enabled for MaxViT-B, MULLER learns to enhance the contrast/details of the
image to some extent; if the input image is aliased, nevertheless, MULLER learns to reduce the ‘aliased effects’. In other
words, the difference image displays some patterns similar to the aliasing effects in the resized image. (b) as for ResNet-50,
it may be seen that MULLER learns to boost details even more for aliased inputs than the anti-aliased. Both effects have not
been observed to significantly impact the performances, though.

5. Visualization
Figs. 2 and 3 illustrate some additional visualization results of the learned MULLER resizer for various backbones, includ-

ing (a) EffNet-B0, (b) MobileNet-V2, (c) ResNet-50, and (d) MaxViT-B, arranged in ascending order of model complexity.
A few of observations can be made: (1) On all the models, the MULLER resizer learns to boost the details/contrast of the
image, albeit with varying degrees; (2) As evident from the performance gain of the vision models, the embedded information
in the MULLER resized images is machine-friendly, and contributes to a more effective learning of the backbone; (3) Due



Anti-aliasing? Model α1 β1 α2 β2 top-1 acc.

Yes
EffNet-B0 [9] 1.715 0.088 -8.41 0.001 78.2
MobileNet-v2 [6] 1.480 0.174 -5.25 -0.058 71.8
ResNet-50 [1] 1.892 -0.014 -11.295 0.003 76.2

No
EffNet-B0 [9] 1.632 -0.014 -7.265 0.026 78.2
MobileNet-v2 [6] 1.792 0.269 -7.514 -0.077 71.7
ResNet-50 [1] 1.687 -0.039 -12.637 0.015 76.2

Table 5. The learned MULLER parameters for different backbone models train on ImageNet-1k. Top 3 rows show results
using anti-aliased resizer while bottom 3 rows depict aliased resizing..

Anti-Aliased 

Aliased

Learned Resizer

Learned Resizer

Difference

Difference

Anti-Aliased Learned Resizer Difference

Aliased Learned Resizer Difference

(a) Anti-aliased vs. aliased resize method for MaxViT-B

Anti-Aliased Learned Resizer Difference Anti-Aliased Learned Resizer Difference

Aliased Learned Resizer Difference Aliased Learned Resizer Difference

Aliased Learned Resizer Learned Resizer Difference

(b) Anti-aliased vs. aliased resize method for ResNet-50

Figure 1. Visualization of the impact of anti-aliasing for the input image of MULLER. (a) shows examples for MaxViT-B,
while (b) demonstrates those for ResNet-50.

to the highly regularized design of the resizer, the outputs of MULLER remain highly perceivable by human (in some cases
even look perceptually superior), even though MULLER is purely trained for machine vision.



(a) EffNet-B0 (b) MobileNet-V2 (c) ResNet-50 (d) MaxViT-BDefault resized

Figure 2. Visualizations of the MULLER resizer for (a) EffNet-B0, (b) MobileNet-V2, (c) ResNet-50, and (d) MaxViT-B.
Here the default resizer is an anti-aliased resizer. Below each resized image shows the difference with the default resizer.



(a) EffNet-B0 (b) MobileNet-V2 (c) ResNet-50 (d) MaxViT-BDefault resized

Figure 3. Visualizations of the MULLER resizer for (a) EffNet-B0, (b) MobileNet-V2, (c) ResNet-50, and (d) MaxViT-B.
Here the default resizer is an anti-aliased resizer. Below each resized image shows the difference with the default resizer.
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