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Abstract

In this supplementary material, we first show the simu-
lation details and advantages of our contributed EKubric
dataset, and illustrate the data processing and training de-
tails of the three datasets we use. Then we illustrate why
we are minimizing the mutual information here instead of
maximizing it from the background of mutual information,
and describe the details of our proposed multi-stage frame-
work. Finally, we provide more experimental results, in-
cluding the analysis of the multiple trials’ consistency and
the difference between simulated and real-captured events.

1. Our Simulated EKubric Dataset

We use the kubric [ 1] simulator to simulate 15,367 RGB-
PointCloud-Event pairs with rich annotations (including
RGB images, depth images, point clouds and events data
collected by simulated sensors, as well as optical flow, scene
flow, surface normal, semantic segmentation and object co-
ordinates ground truths), denoted as EKubric dataset.

Thanks to the kubric simulator that uses pybullet [2]
to simulate object physics, our simulated EKubric dataset
can handle kinematic collisions and simulate realistic ob-
ject motion trajectories with a gravity model. In addition,
thanks to the convenience of the Blender [3] simulator for
adjustable scene lighting, we can simulate more realistic
ambient illumination. We set different parameters such as
the camera or object moving speed, illumination level, num-
ber of objects, background difficulty, and motion blur level,
and simulated six sequences of standard, blur, complex,
fast, static_camera, and static_objects. We simulate a to-
tal of 15,367 pairs of samples, and uniformly sample them
according to different sequences, in which 12,287 pairs are
used as training sets and 3080 pairs as testing sets.

The differences between the FlyingThings3D [4] dataset
and our simulated EKubric dataset are shown in Table 1. We
show some visualizations of comparing FlyingThings [4]
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Figure 1: Dataset visual comparisons between the Fly-
ingThings3D [4] dataset (top) and our simulated EKubric
dataset (bottom). We find many clipping problems in Fly-
ingThings3D, and the motion of EKubric is more realistic

with collision detection.

and EKubric dataset in Fig. 1. We find that there are many
clipping problems in the FlyingThings dataset, and there are
a few kinds of objects and some of them lack textures. How-
ever, our simulated EKubric dataset is more realistic due to
the introduction of collision detection, and there are more
kinds of objects with richer textures. Furthermore, in Fig. 2,
we show the 2D visualizations of a representative scene,
with collision detection and gravity motion model in our
simulated dataset. In addition to the data used for our joint
optical flow and scene flow estimation task, we also provide
semantic segmentation, object coordinates and surface nor-
mal maps. These additional data are simulated by the kubric
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Table 1: Dataset comparisons between the FlyingThings3D [4] dataset and our simulated EKubric dataset. Our proposed
dataset provides more types of annotations while simulating more realistically.

Figure 2: Visualization of a sequence of consecutive frames in our simulated EKubric dataset.
detection and gravity motion model, we can simulate realistic RGB images for multiple moving objects. At the same time,
we can output events, optical flow, depth, semantic segmentation (Seg), object coordinates (Coord) and surface normal
(Normal) maps.

simulator. We believe that these rich kinds of data can pro-
vide large-scale training data for event-based motion seg-
mentation, 6-DOF pose estimation and other motion-related
tasks, and our proposed dataset is of significant value to the
event-based vision community.

2. Data Processing and Training Details

Because the datasets we use only provide depth or dis-
parity maps, we follow the preprocess pipeline [5, 6] to con-
vert them into 3D point clouds. For the FlyingThings3D
dataset, we train 600 epochs with an initial learning rate of
4 x 10~* and reduce by half at 400 and 500 epochs on the
training set, then evaluate the trained model on the testing
set.

For our simulated EKubric dataset, we use the seman-
tic segmentation maps to distinguish the scene flow at fore-
ground object locations and obtain occlusion maps by bi-
directional optical flow check [7], so that we can report the
scene flow accuracy for full foreground objects (Full) and
unoccluded foreground objects (Non-Occ) on our simulated
EKubric dataset as on the FlyingThings3D dataset. For the
DSEC [8] dataset, since the official test set does not have
depth or disparity annotations, we divide the official train-
ing set (8,170 frames) into a training part (6,747 frames) and
a test part (1,423 frames) based on different sequences. Af-
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ter finetuning the divided training part, the results are eval-
uated on the test part. Then we take the same pipeline of
converting disparity to point cloud as above, because it is
inconvenient to filter out occlusion for real data, so only
the full scene flow accuracy is reported. For the above two
datasets, we use them to finetune the pre-trained model of
FlyingThings3D. In these two finetuning stages, we train
300 epochs with an initial learning rate of 1 x 10~* and
reduce by half at 150 and 250 epochs on the training set.

3. Why Mutual Information Minimization?

Background: Let X and Y be a pair of random variables'
with value over the space X x ) — R, their mutual infor-
mation I(X;Y) is defined as:

vy p(z,y)

1E6Y) =By [log p(z) ® p(y)] W
which is the Kullback-Leibler divergence of the joint dis-
tribution p(, .y from the the product of the marginal dis-
tributions p(z) and p(y). In other words, mutual infor-
mation I(X;Y) measures the information that X and Y
share, which is typically used as a regularizer in loss func-
tion to encourage (via mutual information maximization)

I'We use upper case to represent the variables and lower case to repre-
sent the samples.



or limit dependency (via mutual information minimization)
between variables. As the log density ratio between the joint
distribution p(x, y) and product of marginals p(x) @ p(y) is
intractable, mutual information is usually estimated instead
of computed directly, leading to both mutual information
maximization with a lower bound and mutual information
minimization with an upper bound.

BA Lower Bound[9]: According to the Bayesian’s law,
we have p(z,y) = p(y|x)p(z), where p(y|x) is the true
conditional distribution, and can be approximated with a
variational counterpart gg(y|z), with 6 as the model pa-
rameter set. In this case, we obtain the mutual information
lower bound introduced in [9], namely I, via:

[(X;Y) = Eyo ) llog w] t Drca(p(yl2)lgo(wl))

> IEp(x,y) [log q0 (y|ZL‘>] + H<Y) = Ipa, 2
where H(Y) is the differential entropy of Y, go(y|x) is a
predictor to predict y from z, which can be modeled with a
deep neural network with parameters 6.
vCLUB Upper Bound [10]: Given X and Y with un-
known conditional distribution p(y|z) (or p(z|y)), [10] in-
troduces contrastive log-ratio upper bound (CLUB) of mu-
tual information between X and Y, which is defined as:
Licrus = Ep(e,y) [log go(y]7)] — Ep)Ep(y) [log go(y]z)]
> I(X;Y).
3)
Same as Eq. 2, gop(y|x) is a variational distribution with pa-
rameters 6 to approximate the true distribution p(y|x). As
Eq. 3 involves sampling from both marginal distributions,
leading to O(N?) computational complexity, where N is
the size of the samples. To accelerate the mutual infor-
mation upper bound computation, [!0] uniformly samples
negative pairs (z;,yy/), treating its probability qo(y:|z:)
as unbiased estimation of the mean of the probability
Ep(y) [90(y|2;)]. In this case, the sampled mutual informa-
tion estimator [10] is defined as:

N
Icrups = Z log g (ysl2i) — log qo (yx;x:)] . (4)

where NV is the size of the training data or the minibatch.

Why do we use mutual information minimization? Mu-
tual information maximization with a lower bound is effec-
tive for representation learning [ 1] to obtain similar fea-
tures. On the contrary, mutual information minimization
with an upper bound has advantages in disentangled repre-
sentation learning [12]. In this paper, we claim that each
modality contributes partially to the complete output, and
mutual information minimization is more suitable for our
task of exploring the complementary information of each

modality. Specifically, we follow [10] and introduce cross-
modal mutual information minimization as a regularizer
term to constrain the model to focus on the exclusive fea-
ture of each modality for our joint optical flow and scene
flow estimation task.

4. Network Details

Multi-modal Feature Pyramid Extraction with Feature
Stage Fusion. For the given three modalities of in-
puts, ie., two frames of images, two frames of point
clouds, and events, we first voxelize the raw events £ =
{x:,vi,ti, pi } € into one event voxel EV € RTXWXB that
can be used as input to our network, where K is the num-
ber of events during the period between two frames and B
is the number of intervals that need to be manually chosen
to sample the original event in the time dimension. Then
we use the Siamese encoders to construct feature pyramids
for each modality respectively. As there are two frames of
images and point clouds, we extract two feature pyramids
{er,ser, 1 and {epe, , €pe, }, With pyramid layers [ € [1, L]
for images and point clouds, We only constructe one fea-
ture pyramid e.,,; for events, because we take the events as
a single independent input data.

Then we conduct the feature stage fusion in both 2D
branch and 3D branch. As the event data spans the entire
time interval, only the RGB image and point cloud data are
fused in this stage. Specifically, the 3D multimodal fusion
in Eq.4 is applied to fuse both features of RGB images with
the corresponding point clouds, and the 2D multimodal fu-
sion in Eq.5 is performed to achieve feature stage fusion
in 2D. Note that the auxiliary feature in this case indicates
unimodal representation, i.e. Y32 = e /et7 for 3D fu-
sion and Y2D = ep] / eb? for 2D fusion. Similarly, the
mutual information regulanzation is defined between the
image feature and point cloud feature in both 2D and 3D
space, where I""*(e,. ;epe, ), 19" (€,; €pc,) from Eq.6 is
used. In summary, we conduct four times fusion operations
at the feature stage of each pyramid layer.

Correlation Construction with Motion Stage Fusion. To
model the motion correlations from two frames of images
and point clouds, we first warp image and point cloud fea-
tures to reference frame using the coarse optical flow and
scene flow estimated from the previous pyramid layer, and
then construct 2D and 3D correlations by computing 2D and
3D cost volumes. The cost volume cv,. of the 2D branch is
computed by local search [13], and cv,. of the 3D branch
is realized by a learnable layer [14]. Similar to the feature
stage fusion, motion stage fusion is achieved with the multi-
modal attention fusion strategy and mutual information reg-
ularization (Eq.8) for the projected cost volume-based fea-
ture representation cv, and cvy,. and event feature e, in 2D
and 3D (Eq.5 and Eq.4). In this process, we conduct two
fusion operations with the event feature in both 2D and 3D



~%

Point Clouds

Scene Flow GT

CamLiFlow [0]

CamLiFlow+Events RPEFlow (Ours)

Figure 3: Extended visual comparisons on the “val” split of the FlyingThings3D [4] subset. For the bottom 3D comparisons,
blue indicates a lower error, red indicates a higher error, and green indicates the median. Best to zoom in on the screen for

detailed comparisons.

branches, because events can provide complementary mo-
tion information to enhance the motion correlation.

Flow Estimation with Estimation Stage Fusion. With the
motion correlation, we then estimate the motion filed with
the flow decoder and flow estimator in the corresponding
2D or 3D branch. The inputs to the flow decoder include
the output of motion correlation, the reference frame fea-
ture, the event feature, and the coarse flow from the upper
pyramid layer. Again, we conduct an estimation stage fu-
sion to fuse the outputs of the two branches decoder with
the event feature. Finally, the 2D optical flow and 3D scene
flow are produced with two different flow estimators and
are fed into the next pyramid layer to achieve coarse-to-fine
predictions. We take the optical flow estimation in the 2D
branch and the scene flow estimation in the 3D branch of
the last pyramid layer as our final joint predictions.

5. Experiments
5.1. Extended Evaluations

Due to space limitations, we only show one sample
of visual comparisons on the FlyingThings [4] dataset in
the main submission, and here we further provide two in
Fig. 3. We also conduct generalizability experiments on the
KITTI [15] dataset, which is usually used in image-based
optical flow and scene flow estimation methods. In Table 2,
we report the qualitative results on KITTI using models pre-
trained on FlyingThings3D. From these additional compar-
isons, we can conclude that both the introduction of events
and our proposed framework can significantly improve the
accuracy of optical flow and scene flow estimation.

Method Optical Flow Scene Flow
EPE:p  ACCipx  EPEsp  ACCys

RAFT [16] 4296  68.14% - -
RAFT-3D [17] 4.725 57.67% 0.518 33.55%
CamLiFlow [6] 7.643  61.50% 0.223 43.40%

RAFT+Event 4296  68.14% - -
CamLiFlow+Event 4.887 66.77% 0.190 49.47%
RPEFlow (Ours) 3.308 70.02% 0.173  54.32%

Table 2: Generalization performance comparison on the
“training” split of KITTI [15] dataset. Both models are
pretrained on the FlyingThings3D dataset and evaluated di-
rectly on the KITTI dataset without finetuning.

5.2. Real vs. virtual event camera

In Table 3, we additionally evaluate the simulated events
of DSEC [18] dataset. The performance gap suggests that
the simulated events cannot fully model the actual dynam-
ics resulting in performance degradation, while real cap-
tured events can provide rich motion information. This fur-
ther demonstrates that events are helpful and irreplaceable
in capturing high dynamics.
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