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1. Theoretical Analysis

1.1. Proof of Theorem 1

Proof. Note that with the fixed features, the function
L(θ0,W ) is convex in W . Assuming the function is m-
strongly convex such that for the arbitrary (W1,W2), we
have

L(W1) ≥ L(W2)+⟨∇W2L(W2),W1−W2⟩+
m

2
∥W1−W2∥2F

Since W 0 is the optimal solution for L(θ0,W ), we have

∥WT −W 0∥2F ≤ 2

m
(L(θ0,WT )− L(θ0,W 0))

=
2

m
(L(θ0,WT )− L(θT ,WT ) + L(θT ,WT )− L(θ0,W 0))

≤ 2

m
(L(θ0,WT )− L(θT ,WT )) (1)

The last inequality is due to that fine-tuning can obtain a
better performance than linear probing, i.e., L(θT ,WT ) ≤
L(θ0,W 0).

For fine-tuning, the loss function L is non-convex but
can be Lipschitz continuous. With L/2 as the parameter of
Lipschitz continuous, we have

L(θ0,WT )− L(θT ,WT ) ≤ L

2
∥θ0 − θT ∥F ≤ L

2
ϵ

where the last inequality is from the constraint of fine-
tuning. Taking it back to the Eqn. 1, the result is ob-
tained.

*Work done during internship at DAMO Academy, Alibaba Group.
†Corresponding author

1.2. Proof of Proposition 1

Proof. Note that the backbone is updated by SGD

θt = θt−1 − ηt∇Lθt−1

Adding t from 0 to T , we have θT = θ0 −
∑T

t ηt∇Lθt−1 .
By applying the triangle inequality, the difference between
θT and θ0 can be bounded as

∥θ0 − θT ∥F = ∥
T∑
t

ηt∇Lθt−1∥F

≤
T∑
t

ηt∥∇Lθt−1∥F ≤
T∑
t

ηtδ

With a cosine decay strategy and the initial learning rate as
η0, we have

∥θ0 − θ∗∥F ≤ 0.5δη0

∫ π

0

1 + cos(x)dx = 0.5η0πδ

1.3. Proof of Theorem 2

Proof. According to the definition, we have

Pi,k =
exp((xi −wyi

)⊤wk +w⊤
yi
wk)∑C

j exp((xi −wyi
)⊤wj +w⊤

yi
wj)

With Cauchy-Schwarz inequality, we have

−γ∥xi −wyi∥2 ≤ (xi −wyi)
⊤wk ≤ γ∥xi −wyi∥2

Due to the fact that exponential function is monotone, we
have

Pi,k ≤
c exp(w⊤

yi
wk)∑C

j exp(w⊤
yi
wj)/c

= c2Pyi,k



Method Aircraft Caltech Cars C10 C100 CUB DTD Flower Food Pet SUN Avg.
CE + LS (mean) 76.80 94.76 89.21 98.02 88.59 78.79 75.95 96.12 88.29 91.57 69.92 86.17
CE + LS (std) 0.46 0.17 0.12 0.08 0.16 0.08 0.09 0.50 0.31 0.04 0.34 0.21
TeS (mean) 77.80 94.78 90.01 97.97 88.48 80.01 77.01 96.74 88.49 92.17 70.98 86.77
TeS (std) 0.16 0.10 0.10 0.11 0.10 0.32 0.12 0.10 0.08 0.13 0.11 0.13

Table 1. Comparison with ViT pre-trained by CLIP. The significantly better method examined by Student’s t-test is bolded.

and

Pi,k ≥
exp(w⊤

yi
wk)/c∑C

j c exp(w⊤
yi
wj)

=
1

c2
Pyi,k

where c = exp(γ∥xi −wyi∥2).

2. Repeated Experiments on CLIP
We repeat experiments for the vision encoder of CLIP by

3 times and conduct Student’s t-test at the 95% confidence
level in Table 1. It confirms that our method is significantly
better than the best baseline on average.


