Improved Visual Fine-tuning with Natural Language Supervision Supplementary

Junyang Wang^{1*} Yuanhong Xu² Juhua Hu³ Ming Yan² Jitao Sang^{1,4} Qi Qian^{5†}

¹ School of Computer and Information Technology & Beijing Key Lab of Traffic Data Analysis and Mining,

Beijing Jiaotong University, Beijing, China

² DAMO Academy, Alibaba Group, Hangzhou, China

³ School of Engineering and Technology, University of Washington, Tacoma, WA 98402, USA

⁴ Peng Cheng Lab, Shenzhen, China

⁵ DAMO Academy, Alibaba Group, Bellevue, WA 98004, USA

{junyangwang, jtsang}@bjtu.edu.cn, {yuanhong.xuyh, ym119608, qi.qian}@alibaba-inc.com, juhuah@uw.edu

1. Theoretical Analysis

1.1. Proof of Theorem 1

Proof. Note that with the fixed features, the function $\mathcal{L}(\theta^0, W)$ is convex in W. Assuming the function is *m*-strongly convex such that for the arbitrary (W_1, W_2) , we have

$$\mathcal{L}(W_1) \ge \mathcal{L}(W_2) + \langle \nabla_{W_2} \mathcal{L}(W_2), W_1 - W_2 \rangle + \frac{m}{2} \|W_1 - W_2\|_F^2$$

Since W^0 is the optimal solution for $\mathcal{L}(\theta^0, W)$, we have

$$\begin{split} \|W^{T} - W^{0}\|_{F}^{2} &\leq \frac{2}{m} (\mathcal{L}(\theta^{0}, W^{T}) - \mathcal{L}(\theta^{0}, W^{0})) \\ &= \frac{2}{m} (\mathcal{L}(\theta^{0}, W^{T}) - \mathcal{L}(\theta^{T}, W^{T}) + \mathcal{L}(\theta^{T}, W^{T}) - \mathcal{L}(\theta^{0}, W^{0}) \\ &\leq \frac{2}{m} (\mathcal{L}(\theta^{0}, W^{T}) - \mathcal{L}(\theta^{T}, W^{T})) \end{split}$$
(1)

The last inequality is due to that fine-tuning can obtain a better performance than linear probing, i.e., $\mathcal{L}(\theta^T, W^T) \leq \mathcal{L}(\theta^0, W^0)$.

For fine-tuning, the loss function \mathcal{L} is non-convex but can be Lipschitz continuous. With L/2 as the parameter of Lipschitz continuous, we have

$$\mathcal{L}(\theta^0, W^T) - \mathcal{L}(\theta^T, W^T) \le \frac{L}{2} \|\theta^0 - \theta^T\|_F \le \frac{L}{2} \epsilon$$

where the last inequality is from the constraint of finetuning. Taking it back to the Eqn. 1, the result is obtained. $\hfill\square$

1.2. Proof of Proposition 1

Proof. Note that the backbone is updated by SGD

$$\theta^t = \theta^{t-1} - \eta_t \nabla \mathcal{L}_{\theta^{t-1}}$$

Adding t from 0 to T, we have $\theta^T = \theta^0 - \sum_t^T \eta_t \nabla \mathcal{L}_{\theta^{t-1}}$. By applying the triangle inequality, the difference between θ^T and θ^0 can be bounded as

$$\|\theta^{0} - \theta^{T}\|_{F} = \|\sum_{t}^{T} \eta_{t} \nabla \mathcal{L}_{\theta^{t-1}}\|_{F}$$
$$\leq \sum_{t}^{T} \eta_{t} \|\nabla \mathcal{L}_{\theta^{t-1}}\|_{F} \leq \sum_{t}^{T} \eta_{t} \delta$$

With a cosine decay strategy and the initial learning rate as η_0 , we have

$$\|\theta^0 - \theta^*\|_F \le 0.5\delta\eta_0 \int_0^\pi 1 + \cos(x)dx = 0.5\eta_0\pi\delta$$

1.3. Proof of Theorem 2

Proof. According to the definition, we have

$$P_{i,k} = \frac{\exp((\mathbf{x}_i - \mathbf{w}_{y_i})^\top \mathbf{w}_k + \mathbf{w}_{y_i}^\top \mathbf{w}_k)}{\sum_j^C \exp((\mathbf{x}_i - \mathbf{w}_{y_i})^\top \mathbf{w}_j + \mathbf{w}_{y_i}^\top \mathbf{w}_j)}$$

With Cauchy-Schwarz inequality, we have

$$-\gamma \|\mathbf{x}_i - \mathbf{w}_{y_i}\|_2 \le (\mathbf{x}_i - \mathbf{w}_{y_i})^\top \mathbf{w}_k \le \gamma \|\mathbf{x}_i - \mathbf{w}_{y_i}\|_2$$

Due to the fact that exponential function is monotone, we have

$$P_{i,k} \le \frac{c \exp(\mathbf{w}_{y_i}^{\top} \mathbf{w}_k)}{\sum_j^C \exp(\mathbf{w}_{y_i}^{\top} \mathbf{w}_j)/c} = c^2 P_{y_i,k}$$

^{*}Work done during internship at DAMO Academy, Alibaba Group. [†]Corresponding author

Method	Aircraft	Caltech	Cars	C10	C100	CUB	DTD	Flower	Food	Pet	SUN	Avg.
CE + LS (mean)	76.80	94.76	89.21	98.02	88.59	78.79	75.95	96.12	88.29	91.57	69.92	86.17
CE + LS (std)	0.46	0.17	0.12	0.08	0.16	0.08	0.09	0.50	0.31	0.04	0.34	0.21
TeS (mean)	77.80	94.78	90.01	97.97	88.48	80.01	77.01	96.74	88.49	92.17	70.98	86.77
TeS (std)	0.16	0.10	0.10	0.11	0.10	0.32	0.12	0.10	0.08	0.13	0.11	0.13

Table 1. Comparison with ViT pre-trained by CLIP. The significantly better method examined by Student's t-test is bolded.

and

$$P_{i,k} \ge \frac{\exp(\mathbf{w}_{y_i}^\top \mathbf{w}_k)/c}{\sum_j^C c \exp(\mathbf{w}_{y_i}^\top \mathbf{w}_j)} = \frac{1}{c^2} P_{y_i,k}$$

where $c = \exp(\gamma \|\mathbf{x}_i - \mathbf{w}_{y_i}\|_2)$.

2. Repeated Experiments on CLIP

We repeat experiments for the vision encoder of CLIP by 3 times and conduct Student's t-test at the 95% confidence level in Table 1. It confirms that our method is significantly better than the best baseline on average.