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Abstract

Unsupervised image denoising has been proposed to
alleviate the widespread noise problem without requir-
ing clean images. Existing works mainly follow the self-
supervised way, which tries to reconstruct each pixel x of
noisy images without the knowledge of x. More recently,
some pioneer works further emphasize the importance of x
and propose to weigh the information extracted from x and
other pixels when recovering x. However, such a method is
highly sensitive to the standard deviation σn of noise in-
jected to clean images, where σn is inaccessible without
knowing clean images. Thus, it is unrealistic to assume that
σn is known for pursuing high model performance.

To alleviate this issue, we propose Noise2Info to extract
the critical information, the standard deviation σn of in-
jected noise, only based on the noisy images. Specifically,
we first theoretically provide an upper bound on σn, while
the bound requires clean images. Then, we propose a novel
method to estimate the bound of σn by only using noisy im-
ages. Besides, we prove that the difference between our es-
timation with the true deviation goes smaller as the model
training. Empirical studies show that Noise2Info is effective
and robust on benchmark data sets and closely estimates the
standard deviation of noise during model training.

1. Introduction

Generally, images are vulnerable to noise from latent ob-
servation and transmission [5, 26]. As an essential enhance-
ment for digital images, image denoising aims to convert
noisy images X to clean ones Y , where the image denois-
ing model F(X) is expected to output the near clean image
(i.e., F(X) ≈ Y ). Assuming that clean images are avail-
able, deep learning models [23, 16] have been introduced to
the image denoising task, and achieved outstanding perfor-
mance over traditional methods [10, 11, 12] on the super-
vised image denoising task [31, 22, 14].

However, in real-world scenarios, only noisy images can
be observed, i.e., we do not know whether an image has
been contaminated or what the ground truth of a noisy im-
age (a clean one) looks like. Thus, it is hard to apply the
supervised deep learning approaches. To handle such cases,
Noise2Noise [19] assumes that pairwise noisy images of
one clean image can be accessible, which can be viewed
as noisy supervision [29]. On the other hand, many pa-
pers assume that the distribution of noise is known, named
noise model. A common setting for noise n ∼ N is
zero-mean (µn = 0) with unknown standard deviation (σn)
[17, 18, 29, 3]. The Gaussian and multiplicative Bernoulli
noises have also been covered [21]. CBDNet [14] assumes
that photographs have Poisson-Gaussian noise. However,
their assumptions are not always held in reality and limit
the applicability of their methods.

To enable models to denoise on a more practical sce-
nario, recent works (e.g., Noise2Self [3], Noise2Void [17]
and Convolutional blind-spot network [18]) develop self-
supervised models mainly based on available noisy images.
If a model F takes noisy image X as both input and target,
it will quickly collapse to the identity function F(X) = X .
Instead, these papers use the idea of J−invariance [3].
Loosely speaking, given noise image X , a J−invariant
model denoises each pixel x ∈ X only based on any other
pixels (i.e., using pixels from X\{x}). This setting pre-
vents model from learning the identity function. Though
the pixels used for supervision are noisy, with many sam-
ples drawn from the same image distribution, the model is
supposed to learn the expected ground truth value.

For the strictly J−invariant model, each pixel is de-
noised without using the pixel itself, so that we call it exter-
nal method. Based on the idea, many papers point out that
the extracted information based on the pixel itself, which
is the internal information of the pixel, can be utilized for
better results [3, 18, 29]. Noise2Same [29] considers both
the external and internal information to further outperform
these purely external models. Formally, Noise2Same builds
a self-supervised L(F , X) (i.e., the loss of F w.r.t. X) on



(a) Clean Image. (b) Raw Noisy Image (𝜎𝑛 = 0.7683) 

PSNR: 5.95

(d) Noise2Same with 𝜎𝑙𝑜𝑠𝑠 = 𝜎𝑛
PSNR: 19.00

(c) Noise2Same with 𝜎𝑙𝑜𝑠𝑠 = 0.5
PSNR: 16.16

(e) Noise2Same with 𝜎𝑙𝑜𝑠𝑠 = 1
PSNR: 18.07

(f) Our Noise2Info with 𝜎𝑙𝑜𝑠𝑠 = 0.7783
PSNR: 18.81

Figure 1: Motivation examples taken from Hànzı̀ dataset to compare our output with Noise2Same under different σloss.

the top of internal loss Lin and external loss Lex as:

L(F , X) = Lin + 2σlossLex, (1)

which is an upper bound of the typical supervised loss. For
a normalized noisy image, σloss is proved to be the stan-
dard deviation of its noise σn. As σn is not available,
Noise2Same uses σloss = 1 by default instead. Note that
the closer σloss and σn are, the better the image denois-
ing performance. As shown in Fig. 1, we show an im-
age (Fig. 1 (a)) from Hànzı̀ dataset and its noisy version
(Fig. 1 (b)) with std of noise σn = 0.7683. When σloss is
set to 0.5 and 1 (Fig. 1(c) and Fig. 1 (e)), the performances
of Noise2Same are not so desirable compared with that of
σloss = σn (Fig. 1 (d)). However, σn can only be known
when clean images are available, which contradicts the pur-
pose of practical image denoising. Thus, it is hard to manu-
ally set σloss closed to σn for better performance, especially
when there is no clean image for tuning σloss. Besides, as
shown in Fig. 4 of [29], the quality of denoised images is
highly sensitive to σloss.

In this paper, we aim to solve the above issue to enable
the image denoising model to work well when no clean im-
age nor noise model is available. Motivated by the observa-
tion on σn, we propose Noise2Info to derive σn-related in-
formation by only taking the noisy images as inputs, which
has not been studied in existing works. First, we theoreti-
cally estimate the upper bound of σn in Noise2Info. Then,
based on the estimation, Noise2Info can dynamically up-
date σloss during the model training. In addition, we prove
that the gap between estimated upper bound with the true

standard deviation will become smaller as model training,
leading to a convergent stable result. The empirical study
shows that Noise2Info outperforms other self-supervised
methods and achieves comparable results over the super-
vised methods. Especially, Noise2Info even beats all self-
supervised methods including Noise2Same with known σn

on the two benchmark data sets where noises are signal-
dependent and not zero-mean, which validates the general-
ity of our method. We also synthesize data sets with various
noise types and scales. As shown in Tab. 4 and Tab. 9, the
gap between σn and σloss estimated by Noise2info is pretty
small (< 0.02), which verifies that Noise2info can indeed
estimate σn only based on noisy images.

Notations. In this paper, we denote the lower case a to
the scalar and the upper case A ∈ Rm to the vector. We
use the superscript A(i) ∈ Rm to denote the i-th sample,
the bold font A to the set, like a = {a(1), . . . , a(q)} and
A = {A(1), . . . , A(q)}. The subscript A(i)

j is j-th element
of A(i). The Fraktur case A denotes the function. Besides,
Ã denotes the output of the denoising model, and the star
A∗ denotes the estimation.

2. Background and Related Works
2.1. Image denoising

We categorize various image denoising models based on
the form of supervision below.

Unsupervised Denoising. Many traditional methods
based on the assumptions of smoothness and self-similarity
of the image fall into this category. These models do not



need to be trained and thus have a wide range of applica-
bilities but their performance is unstable [5, 26]. Various
filters can be viewed as denoisers, such as Mean filter, Me-
dian filter, and Gauss filter [13]. The non-local means al-
gorithm [4] is proposed as a more powerful mean filter. It
outputs the mean of weighted pixels from the whole image
instead of neighbors, where the weights are set according to
similarity. BM3D algorithm [10] further improves the re-
sults. Similar image fragments are grouped and stacked as
blocks. These blocks are further transferred to frequency
space and applied with thresholding to filter high frequency
noise. BM3D has many hyperparameters including the stan-
dard deviation of noise for thresholding, which limits its ap-
plicability for blind denoising.

Denoising with Paired Input and Target. The image
denoising can be viewed as a general regression task with
paired noisy and clean images (X,Y ), where X,Y ∈ Rm

and m = h×w× c is the number of pixels of each RGB
image. The noisy image can be viewed as a combination of
the clean image and a noise map N (X = Y + N ), where
N ∈ Rm and the pixels of N are i.i.d.. The denoising model
F : Rm → Rm aims to minimize the loss function:

L = EX,Y ||F(X)− Y ||, (2)

where || · || is the distance metric. DnCNN [31] learns the
residual noise map Ñ ∈ Rm and uses X − Ñ as the final
output. CBDNet [14] assumes that the noise map Ñ is more
likely to follow the mixed Poisson-Gaussian distribution.

However, clean images are usually not available in real-
world scenarios. Noise2Noise [19] builds the denoising
model with noisy pairs (X1, X2), which has loss function:

L = EX1,X2 ||F(X1)−X2||. (3)

As long as the pair of noisy samples have zero-mean and in-
dependent noise, Noise2Noise proves that training on paired
noisy images is the same as training on noisy and clean im-
ages because of the proof E[X2|X1] = Y . Under such
noisy supervision, Noise2Noise even outperforms the super-
vised models trained on clean images of some datasets.

Self-supervised Denoising. It is still hard to hold the
assumption of Noise2Noise that two or more samples with
independent noise for a clean image exist. Noise2Self [3]
first proposes theJ -invariance to handle a more general and
realistic case, which trains denoising models only with one
noisy observation, i.e., self-supervised image denoising.

Definition 1 (J -invariance). Given a noisy im-
age X ∈ Rm, let J =

{
J (1), J (2), · · · , J (k)

}
be the non-intersecting partition of image X , and
XJ be the pixels in the partition J ∈ J , i.e.,
concatenate(XJ(1) , . . . , XJ(k)) = X . Then, let
Jc = J \{J} denote the complement of J . The J -
invariant function is defined as:

[F(XJc)]J = [F(X)]J ,∀J ∈ J .

The J -invariant function tries to recover pixels in parti-
tion J by only using information from other partitions XJc ,
which can be regarded as self-supervision. It can force the
model to extract the correlation between the pixels of one
partition with those of other partitions.

Based on the J -invariance, the J -invariant models
Noise2Self [3], Noise2Void [17], and ConvBS [18] propose
to minimize losses of the form:

L = EX [L(F , X)], (4)

where the model F is updated based only on each noisy
image X . Generally, the pixels in clean images are highly
correlated. Assuming that the noises in every pixel are inde-
pendent, suchJ -invariant models can eliminate the noise of
a given pixel by leveraging the neighbor information of this
pixel. To exclude the information of pixel itself, Noise2Self
and Noise2Void use masks while ConvBS designs a special
convolution layer with restricted receptive field.

2.2. Information exploration and Bound of
Noise2Same

J -invariant models only make use of external informa-
tion, i.e., only XJc without XJ . Many papers point out that
these models clearly waste the internal information, i.e., the
information of the pixel itself XJ , which can further im-
prove the result [3, 18, 29]. Noise2Self [3] states that a
linear combination of XJ and F(XJc) improves the result
when the standard deviation of noise σn is known. ConvBS
[18] can improve the result with post-processing if the noise
model is known. The advanced Noise2Same [29] proposes
a theoretical bound over the loss in Eq. (2), which combines
external and internal information:

EX,Y

[
||F(X)− Y ||2 + ||X − Y ||2

]
≤EX||F(X)−X||2

+2σn ·mEJ

[
E||F(X)J−F(XJc)J||

2/|J |
]1/2

=Lin + 2σn · Lex. (5)

We denote components on the left and right of Eq. (5) as
Lin and Lex. Lin pushes the output F(X) similar to the
noisy input X itself. Lex leads to the output that depends
more on XJc by restricting F(X)J −F(XJc)J . However,
without the information of standard deviation of noise σn,
Noise2Same can only use σloss = 1 instead of σn. In this
paper, we aim to estimate σn based on the noisy images.

3. Noise2Info
In this section, we first introduce a tractable estimation

on the upper bound of σn. We analyze the tightness of the
bound and demonstrate that the bound could be tighter dur-
ing model training. Then, we utilize the estimated bound as
σloss in Eq. 1, and introduce how we train the model.
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Figure 2: Examples taken from Hànzı̀. Fb(·) is the denoising model Noise2Info trained within 10 batches, while Fg(·) is
trained until convergence. We plot the CDF of three noise maps (e.g., {X(i) − Y (i)}), their MLEs, and the real noise of the
whole data set.

3.1. Upper Bound of σn

Recall that the performance of advanced image denois-
ing model Noise2Same is affected by the manual setting of
σloss as discussed in Sec. 1. The closer σloss and σn (i.e.
the true standard deviation of the noise) is, the better the
denoising performance. Thus, it is crucial to further inves-
tigate σn. First, we show the theoretical upper bound of σn

in Lemma 1, where the proof is given in Appx. A.

Lemma 1 (Upper Bound of σn). Given a modelF and a set
of q normalized noisy images X =

{
X(i)

}p

i=1
with noise

n ∼ N i.i.d among all the dimensions, the standard devia-
tion of noise σn can be upper bounded to:

σn≤(Lex+
√
L2
ex+m(Lin−EX,Y [||F(X)−Y ||2]))/m,

(6)
where m is the dimension of each image and Lex and Lin

are functions of X and F introduced in Sec. 2. Y is the
clean image for each noisy image X .

In above lemma, Lex and Lin are tractable with
only noisy image X (see Eq. 5). However, term
EX,Y

[
||F(X)− Y ||2

]
(i.e., L in Eq. 2) requires clean

image Y , which is usually inaccessible as discussed
in Sec. 2.1. To achieve an upper bound of σn, we
need to estimate the lower bound of classic loss L =

EX,Y

[
||F(X)− Y ||2

]
. We first rewrite L as:

EX,Y

[
||(X−Y )−(X−F(X))||2

]
=EX,N[||N−Ñ(X)||2],

(7)
where N = X − Y is the true injected noise and Ñ(X) =
X−F(X) is the noise removed by the denoising model F .
Note that Ñ(X) can be observed for any given F , while N
is unknown due to the inaccessible clean image Y . We next
introduce the motivational ideas of how to estimate Eq. 7.

As mentioned before, existing works assume that the
noises contained in images are i.i.d. for any given dataset
[17, 18, 29, 3]. Here we demonstrate several examples
from the Hànzı̀ [3] dataset in Fig. 2. Given 3 noisy
images {X(i)}3i=1 in Fig. 2 (a) and their corresponding
clean images {Y (i)}3i=1 in Fig. 2 (b), the true noise maps
({N (i)}3i=1 = {X(i) − Y (i)}3i=1) are shown in Fig. 2 (e).
Then, we plot the cumulative distribution function (CDF)
of each noise map N and the maximum likelihood estima-
tion (MLE) of them in Fig. 2 (h). It is clear that they have
similar patterns, i.e., follow the same real distribution (red
line). Motivated by the assumption and empirical observa-
tion, we propose the idea that X − F(X) is expected to
follow one same distribution if the image denoising model
F is good. That is because F(X) tries to nearly output the
clean image Y . If X−Y follows a distribution, X−F(X)
should also follow the same one as long as F(X) ≈ Y . In
Eq. (7), noise maps {N (i)}qi=1 are sampled from the same
noise model. If the removed noises {Ñ(X(i))}qi=1s from



different images are of diverse distributions, no matter what
distribution {N (i)}qi=1 is drawn from, there would be a gap
between N with Ñ(X), i.e., EX,Y [||N−Ñ(X)||2] is large.
Considering the lower bound of Eq. (7), the ideal case is
that the distribution of N is exactly the MLE of samples in
Ñ(X), i.e., EX,Y [||N − Ñ(X)||2] = 0. Here we adopt it
as our estimation.

Formally, given q noisy images X =
{
X(i)

}p

i=1
, the

denoising model F outputs q removed noise maps Ñ =
{Ñ(X(i))}qi=1, where Ñ(X(i)) = X(i) − F(X(i)) ∈ Rm.
Let ñ = {Ñ(X(i))j}q,mi,j=1 denote all removed noise pixels,
where Ñ(X(i))j is the value of the jth pixel in Ñ(X(i)).
We derive the MLE of samples in ñ, shown in the lemma
below, where the proof is given in Appx. B.

Lemma 2 (MLE of samples from ñ). We denote the max-
imum likelihood estimation of ñ as n∗ ∼ N ∗, which has
distribution:

P (n∗ = Ñ
(i)
j ) = (mq)−1 ∀Ñ (i)

j ∈ ñ, (8)

where Ñ
(i)
j represents Ñ(X(i))j for short.

In statistics, to parameterize a given form of distribution,
the output of the MLE makes the given samples most prob-
able [24]. For Eq. (7), by replacing the real noise map
N from unknown distribution N with MLE N ∗ based
on Ñ(X), we get a smaller but tractable estimation of
EX,N [||N − Ñ(X)||2]:

EX,N∗

[
||N∗−Ñ(X)||2

]
=EN∗ [EX [

m∑
j=1

(N∗
j −Ñ(X)j)

2]].

(9)
The MLE enables us to estimate the expectation using
Monte Carlo integration. Note that each sampled noise map
N∗ has m pixels, which could have arbitrary indices. We
mathematically prove that the lower bound of Eq. (9) is the
noise map N∗ sorted in ascending order. The lemma is
shown as follows and the proof is in Appx. C.

Lemma 3. Given the sampled noise map N∗ from N ∗,
we sort the m pixels of the removed noise map Ñ(X)
({Ñ(X)j}mj=1) in increasing order and define the index
list as {u1, u2, · · · , um}, i.e., Ñ(X)u1 ≤ Ñ(X)u2 ≤
Ñ(X)u3

≤ · · · ≤ Ñ(X)um
. Similarly, we define the index

list for increasingly sorted sampled noise pixels {N∗
j }mj=1

as {v1, v2, · · · , vm}. We have:

EN∗[EX [

m∑
j=1

(N∗
j −Ñ(X)j)

2]]

≥EN∗[EX[

m∑
j=1

(N∗
vj−Ñ(X)uj)

2]]. (10)

Algorithm 1 Estimate the Upper Bound of σn as σloss

Input: The denoising model F(·), ku noisy images X ={
X(i)

}p

i=1
, the number of samples for MC integration

kmc

Initialize Lin ← 0, Lex ← 0, ñ ∈ {0}ku×m, El ← 0 for
the lower bound of EX,Y

[
||F(X)− Y ||2

]
for i← 1 to ku do

Compute Lin and Lex based on Eq. (5)
ñi,: ← sorted (F(Xi)−Xi)

end for
for i← 1 to kmc do
N∗ ← Uniformly sample m values from ñ and sort
them
El ← El +

∑
i ||ñi:i+m −N∗||2

end for
El ← El/kmc as the expectation
Feed El,Lin,Lex to inequation (6) and get σloss

Return: The estimated of σn as σloss

Note that Eq. (10) can be unbiasedly estimated by
Monte-Carlo (MC) integration with samples from N ∗.

In summary, Eq. (10) provides an estimation of lower
bound on EX,Y

[
||F(X)− Y ||2

]
with Eq. (9) as the step-

ping stone. Then, we finally get a tractable estimation on
the upper bound of σn after applying the lower bound on
EX,Y

[
||F(X)− Y ||2

]
into Eq. (6).

3.2. Noise2Info Training

3.2.1 The Procedure of Estimating σn

The upper bound of σn has been introduced in Sec. 3.1.
In Algo. 1, we show the steps of estimating σn for a fixed
model F . Note that the estimation is utilized as σloss in
L(F , X) = Lin + 2σlossLex (Eq. (1)). Thus, Noise2Info
can avoid manually fixing a value to σloss as Noise2Same
does. Instead, Noise2Info uses an estimate close to σn,
which may further improve the denoising performance.

For each noisy image X , we derive its removed noise
map Ñ(X)=F(X)−X , of which pixels are further sorted
and collected to array ñ. In each round of Monte Carlo
integration, uniform sampling of ñ is exactly a sample of the
maximum likelihood estimation derived in lemma 2. When
we sort the sample and calculate its l2 norm with regard to
ñ, we get a sample for the Eq. (10), which is accumulated
in El. El is divided by kmc as an expectation estimation of
EX,Y [||F(X) − Y ||2]. The terms on the right hand side of
Eq. (6) are estimated, which outputs an upper bound of σn.

3.2.2 Training Framework

Sec. 3.2.1 introduces how to estimate σn for a fixed model
F . During training, the deep learning method updates the
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Figure 3: Training framework of Noise2Info: (A) update
the denoising model F and (B) update the estimation σloss.

Algorithm 2 Noise2Info

Input: The denoising model F , noisy images X ={
X(i)

}p

i=1
, the number of epochs kr, the number of sam-

ples for model updation kt and σn estimation ku.
Initialize σloss ← 1.
for i← 1 to kr do

Update F via loss Lin + 2σlossLex with kt samples.
σ∗
loss ← Algorithm 1(F , ku noisy images, kmc)

if σ∗
loss < σloss then
σloss ← σ∗

loss

end if
end for
Return: model F for denoising

model every batch, where we may obtain many Fs. Among
all estimations on the upper bound of σn, we prefer to
choose models that can implicitly estimate tighter bounds
(i.e., σloss − σn is small). In the following proposition, we
state the relationship between F and its estimation σloss,
where proof is provided in Appx. D.

Proposition 1. Assume that training model F under loss
(5) pushes output F(X) closer to clean image Y . A more
well-trained F will estimates a smaller σloss (i.e., tighter
upper bound of σn).

Based on above proposition, we can estimate tighter
σloss when using a well-trained F . Correspondingly, as
discussed in Sec. 1, we can train more powerful F while
feeding tighter estimation to Eq. (1). Recall the motiva-
tional observation in Fig. 2. Fig. 2 (i) demonstrates that the
MLE of noise maps removed by Fb(·) (only trained with 10
batches) cannot well fit the real one, but that of noise maps
removed by well-trained Fg(·) can fit as shown in Fig. 2 (j).
This verifies that the gap between N with ã is small as long
as the denoising model can nearly output the clean images.

Therefore, we propose to alternatively train the model
F and estimate σn. We summarize the whole training
framework of Noise2Info in Algo. 2 and Fig. 3. In each

Table 1: Data Statistics

Dataset Channel Pixel Range #Tra/Tst Images
ImageNet RGB [0, 255] 60,000 / 978

Hànzı̀ Grey [0,1] 54,385 / 7,770
BSD68 Grey [0, 255] 3,168 / 68

round, F is first updated with an upper bound of loss func-
tion (5), where σloss is applied instead of the unknown σn

(Fig. 3(A)). Then, the model F is fixed and the gradient de-
scent is turned off. ku samples of noisy images are used for
σloss updation according to Algo. 1(Fig. 3(B)). As each es-
timation is an upper bound of σn, we update the σloss once
a smaller estimation is found.

4. Experimental Study

4.1. Experimental Setups

Dataset. We adopt the benchmark datasets including Im-
ageNet ILSVRC 2012 Val [25], Hànzı̀ [3], and BSD68[20],
which are widely adopted in previous works [29, 3, 17, 8].
Besides that, we also conduct experiments on real world
datasets SIDD [2], PolyU [30], and discuss another dataset
Planaria in Appx. E. ImageNet are colored natural images
injected with noise including Poisson noise (λ = 30), addi-
tive Gaussian noise (µ = 0, σ = 60), and Bernoulli noise
(p = 0.2). Hànzı̀ dataset is generated by adding noise
to grey images of Chinese characters, where the main ex-
periment applies Gaussian noise (µ = 0, σ = 0.7) and
Bernoulli noise (p = 0.25). The output images are further
clipped into [0, 1] (set values to 1 if they are larger than 1
and to 0 if they are smaller than 0). BSD68 dataset contains
grey natural images with only Gaussian noise (σ = 25). We
summarize the statistic of these datasets in Tab. 1.

Baselines and Implementations. We compare
Noise2info with traditional methods NLM [4] and
BM3D [10], supervised methods Noise2True defined in
Noise2Noise [19], self-supervised methods Noise2Void
[17], Noise2Self [3], ConvBS [18], and Noise2Same [29].
We follow the Noise2Same, Noise2Void, and Noise2Self to
use Uniform Pixel Selection as the masking strategy. The
real values of masked pixels are invisible to the model,
which forces the model to use external information to de-
noise it (J -invariant). Noise2Same replaces the masked
pixels with i) local average excluding the center pixel
(donut) for BSD68; and ii) Gaussian random value for Im-
ageNet and Hànzı̀, which get the best performance. We
show the results under both donut and random replace-
ments, named Noise2Info-D and Noise2Info-R. One can re-
fer to [29] for the detailed setting of other methods.

All the codes are implemented in Tensorflow [1], which
are available in the supplementary materials. The train-



Table 2: The comparison of image denoising on three data sets. The best scores are in bold font and the second-best scores
are underlined in self-supervised models. ConvBS [18] does not contain the step that requires the noise model. As σloss for
Noise2Same can only be set to 1 with unknown σn, we take Noise2Same(σloss = σn) as a special category.

Category Model Data set
ImageNet Hànzı̀ BSD68

Traditional method
Noisy Images without Denoising 9.70 6.45 20.19
NLM [4] 18.04 8.41 22.73
BM3D [10] 18.74 10.90 28.59

Clean-supervision Noise2True 23.43 16.00 29.11
Noisy-supervision Noise2Noise [19] 23.39 14.30 28.86
Self-supervision +
noise information

Noise2Same-R (σloss = σn) [29] 22.57 14.14 27.77
Noise2Same-D (σloss = σn) [29] 22.58 14.08 28.03

Self-supervision

ConvBS [18] 20.89 10.70 27.15
Noise2Void [17] 21.63 13.84 27.28
Noise2Self-R [3] 21.42 13.98 25.21
Noise2Self-D [3] 21.48 14.11 28.33
Noise2Same-R (σloss = 1) [29] 22.49 14.38 27.10
Noise2Same-D (σloss = 1) [29] 22.57 14.36 27.24
Noise2Info-R 22.51 14.43 27.57
Noise2Info-D 22.60 14.43 27.74

Table 3: The information of groundtruth σn and σloss derived by Noise2Info on three data sets.

Dataset Noise2Info-R Noise2Info-D Training Set Test Set
σloss σloss µn σn µn σn

ImageNet 0.9004 0.9015 -1.3726 0.9832 -0.0560 0.9483
Hànzı̀ 0.9596 0.9592 -0.1815 1.2193 -0.1820 1.2193

BSD68 0.5357 0.5309 0 0.5043 -0.0020 0.4678

ing is conducted on one machine with 4 NVIDIA V100
GPUs. We follow the setting of Noise2Same [29] to em-
ploy GVTNets [27] as the denoising neural network. We set
kt = 900 and ku = 100, and the total number of training
steps ((kt + ku) ∗ kr) to be the same as Noise2Same.

Evaluation Results. Peak Signal-to-Noise Ratio
(PSNR) is used as the evaluation metrics following pre-
vious works [29, 19, 17, 3]. For denoising, PSNR is the
log-transformation of the ratio between the square of max-
imum value of a clean image and its mean-squared er-
ror against the noisy image: PSNR(F(X), Y ) = 10 ·
log10(|max(Y )|2/||F(X)− Y ||2), where the larger PSNR
value indicates the smaller ||F(X)−Y ||2, i.e., better image
denoising performance.

4.2. Main Empirical Study

We show the main results in Tab. 2 and demonstrate
some visual cases in Appx. F.1. Among the traditional
methods, NLM has weak performance compared with
learning-based methods. As discussed in Sec. 2.1, BM3D
relies on the additional information σn for denoising, which
leads to better performance and even beats all the self-

supervised methods on BSD68. Notably, the mean of noises
in BSD68 is zero, which is suitable for BM3D. But learning-
based methods still outperform BM3D on the other two
datasets. Overall, Noise2True outperforms all the other
methods while Noise2Noise outperforms most of the self-
supervised methods. However, it is not realistic to assume
that either clean images or two noisy images sampled from
one clean image are available in the real world.

Among the self-supervised methods, Noise2Info and
Noise2Same outperform the other on ImageNet and Hànzı̀.
On BSD68, only Noise2Self with Donut beat them. How-
ever, Noise2Self -Donut falls behind our method on Ima-
geNet and Hànzı̀ dataset, which is not stable. Based on
Eq. (5), Noise2Same should achieve the best performance
when the standard deviation of noise σn is known. How-
ever, Noise2Info (without knowing σn) even outperforms
Noise2Same (σloss = σn) on ImageNet and Hànzı̀. That is
because the noises of these two data sets are not zero-mean,
which do not follow the assumption of J -invariant mod-
els. We can also observe that Noise2Same (σloss = σn)
is slightly better than Noise2Info on the zero-mean data
BSD68. Overall, Noise2Info achieves good performance



Table 4: The performance on the Hànzı̀ dataset injected with Gaussian noise of standard deviation σ′
n ∈ [0.3, 0.5, 0.7, 0.9].

Our Noise2Info is compared with Noise2Same, which set σloss = 1, σloss = σ′
n and the correct ideal case σloss = σn =

σ′
n/

√
(σ′

n)
2 + σ2

Y ′ . The best scores are in bold font and the second-best scores are underlined.

Model
Level of injected Gaussian noise

σ′
n = 0.3 σ′

n = 0.5 σ′
n = 0.7 σ′

n = 0.9
PSNR σloss PSNR σloss PSNR σloss PSNR σloss

Noise2Void 23.60 - 20.48 - 18.04 - 16.25
Noise2Self 23.45 - 20.56 - 18.22 - 16.58 -

Noise2Same (σloss = σ′
n) 11.70 0.3 10.85 0.5 11.73 0.7 16.64 0.9

Noise2Same (σloss = σn) 23.81 0.5845 20.56 0.7683 18.62 0.8593 16.71 0.9075
Noise2Same (σloss = 1) 23.55 1.0 20.78 1.0 18.66 1.0 16.82 1.0

Noise2Info 23.73 0.6006 20.81 0.7818 18.67 0.8710 16.80 0.9187

among self-supervised modes without requiring informa-
tion about clean images, noise, and noise model.

4.3. The estimation of σn in Noise2Info

The key component of Noise2Info is to estimate σn as
the σloss in training (see Sec. 3.1 and Algo. 1). As shown in
Tab. 3, we list the final derived σloss of Noise2Info on three
benchmark data sets. We can observe that the derived σloss

is very close to the true σn. In BSD68, the derived σloss is
slightly higher than σn, which follows the theory in Eq. (6).
However, the derived σloss is even lower than σn on other
data sets because the assumption of zero-mean does not
strictly hold. Specifically, the performances of Noise2Info
(PSNR = 22.51, 22.60) is pretty close to Noise2Same
(PSNR = 22.49, 22.63) on ImageNet. The reason might
be that σloss and σn are pretty close to 1. For Hànzı̀, hard
clipping is applied and the σn is even larger than 1. The
results of Noise2Info (PSNR = 14.43, 14.43) are slightly
higher than those of self-supervised Noise2Same(PSNR =
14.38, 14.36) and much higher than those of Noise2Same
with σloss = σn (PSNR = 14.14, 14.08). As BSD68 fol-
lows zero-mean Gaussian noise, Noise2Info extracts σloss

(0.5357, 0.5309) when σn = 0.5043.
Besides, Proposition 1 states that Noise2Info’s estima-

tion will be closer to σn as training steps increase. Besides,
we plot Fig. 4 to show the change of σloss derivation dur-
ing training. Note that we add Gaussian noise with zero
mean into clean images in Hànzı̀ data since it does not fol-
low the assumption of J -invariant models. We can observe
that Fig. 4 indeed validates the claims in Proposition 1.

4.4. The influence of σn

To further study the influence of σn to Noise2Same with
σloss= 1and Noise2Info, we construct noisy images based
on the clean images of Hànzı̀ [3], where the added noises
are Gaussian noise with different σn. To construct a dataset,
each original clean image Y ′ is applied with a noise map N ′

with std σ′
n to get noisy image X ′. After normalizing X ′ to

101 102 103 104

step
0.85
0.88
0.91
0.94
0.97
1.00

lo
ss

loss

n = 0.8593

(a) Hànzı̀ data set.
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Figure 4: σloss estimation in different training steps.

X , σ′
n is usually different from σn. Assume that the stan-

dard deviation of original clean and noisy images are σY ′

and σX′ , we have: σn = σ′
n/σX′ = σ′

n/
√

(σ′
n)

2 + σ2
Y ′ ,

where σ2
X′ = (σ′

n)
2 + σ2

Y ′ as noise is independent to the
clean images. The model replaces masking values with
random samples, and other implementations are the same
as Sec. 4.1. As shown in Tab. 4, Noise2Info successfully
estimates σloss which closely upper bounds the real σn.
When σn is small, Noise2Info stably performs better than
Noise2Same with σloss = 1 and close to the ideal result
from Noise2Same with σloss = σn. With σn close to 1, the
σloss and PSNR of the 3 methods are close to each other.
Except for Gaussian distribution, we further study the influ-
ence of more noise distributions in Appx. F.2.



Table 5: The performance on the Hànzı̀ dataset on more noise types. N2S denotes Noise2Same (σloss = σn). FBI [6] is a
denoising method designed for Poisson-Gaussian noise.

Model

Types of injected noises
Poisson-Gaussian (A) Poisson-Gaussian (B) Pepper

σn = 0.8181, µ = 0.0002 σn = 10.32, µ = 6.34 σn = 0.8492, µ = 0.3037
PSNR σloss PSNR σloss PSNR σloss

Noise2Void 18.88 - 17.93 - 23.77 -
Noise2Self 18.91 - 17.57 - 22.19 -

Noise2Same 18.91 0.8181 14.49 10.32 24.35 0.8492
FBI [6] 18.87 N/A 6.54 N/A N/A N/A

Noise2Info 19.11 0.8317 18.52 0.8551 24.96 0.7043

4.5. Further Analysis on Limitation of Noise2Info

The theory of Noise2Info mainly follows the assumption
of J -invariant models where the noise in images is zero-
mean and signal independent. Here we further analyze the
limitations of Noise2Info caused by such an assumption.

As we discussed in Tab. 3, the upper bound estimation in
Noise2Info is not quite accurate in the non-zero mean case.
Thus, we use Fig. 3 and Tab. 4 to show that the theory of
Noise2Info indeed holds for the zero-mean case. Besides,
the empirical performance of Noise2Info is still stable for
datasets without the zero-mean assumption. For example,
in Tab. 2, Noise2Info is better than other self-supervision
methods, though the noise is not zero-mean for Hànzı̀ and
not zero-mean nor signal-independent for ImageNet. This
validates the generality of Noise2Info.

The signal independent assumption is adopted by many
denoising methods [29, 3, 17, 8, 18, 9]. Other than that,
some works focus on particular noises such as Poisson-
Gaussian noise and Pepper noise to mimic real world sce-
narios [6, 7]. Therefore, we conduct more experiments
on these noises together with non-zero mean assumption
in Tab. 5. Poisson-Gaussian noise and pepper noise are
both non-zero-mean without fixed variance. For Poisson-
Gaussian noise on clean image Y , a standard setting is of
the form: X = aP (Y ) + N(b), where P (Y ) is sampled
from a Poisson distribution with variance Y and N is sam-
pled from Gaussian distribution N (0, b2). We use 2 groups
of parameters (a, b) = (1, 0.3) and (0.05, 0.02), denoted as
Poisson-Gaussian A and B, where A is set to be zero-mean.
Pepper noise randomly sets a pixel to 0 with p = 0.25.
As shown in Tab. 5 with the state-of-art work for Poisson-
Gaussian noise (FBI [6]), Noise2Info still performs best.

Besides, we conduct experiments on real world datasets,
which is discussed in Appx. E. Though inferior to
Noise2Same due to special distribution given in Table. 7,
our method outperforms other self-supervised methods.

5. Conclusion

In this paper, we propose Noise2Info for self-supervised
image denoising, which extracts information of noise only
based on noisy images. Compared with methods that re-
quire clean images or noisy image pairs, self-supervised
models are mostly developed based on the theory of J -
invariance. It could be further improved if σn of noise is
known. However, it is intractable without the clean images
and distribution of noise. In Noise2Info, we first present
a theoretical upper bound for σn, and propose a tractable
estimation σn only based on noisy images. Then, we prove
that the estimation is more accurate when the model is more
powerful and propose a training framework that takes turns
to estimate σn and update the model. Extensive experiments
are conducted on benchmark datasets and synthetic datasets
with different scales of noise and different types of noise.
The results show that Noise2Info effectively denoises im-
ages and tightly bounds the σn.
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A. Proof of Lemma 1
Proof. Recall that Noise2Same [29] introduces the follow-
ing inequation:

EX,Y

[
||F(X)− Y ||2 + ||X − Y ||2

]
≤ Lin + 2σn · Lex.

Based on the assumption of zero-mean noise, the left-hand
side satisfies:

EX,Y

[
||F(X)− Y ||2 + ||X − Y ||2

]
=EX,Y

[
||F(X)− Y ||2 + ||X − Y ||2

]
− (EX,Y [X − Y ])

2

=EX,Y

[
||F(X)− Y ||2

]
+ V ar (X − Y )

=EX,Y

[
||F(X)− Y ||2

]
+mσ2

n. (11)

Eq. (11) holds as m pixels in each noise map (X − Y ) are
independent and identically distributed. Reorganizing the
inequation, we have:

σn ≤
Lex +

√
L2
ex +m(Lin − EX,Y [||F(X)− Y ||2])

m
,

B. Proof of Lemma 2
Proof. As we do not restrict the distribution of n∗, we have
the likelihood estimation function:

L(Pñ|ñ) =
∏

Ñ
(i)
j ∈ñ

P
Ñ

(i)
j
,

where ñ is the set of mq pixels of removed noise from q im-
ages of size m. Pñ are the set of probabilities correspond-
ing to ñ of distribution n∗, which has no specified correla-
tion with each other. Taking the log, we want to maximize:

logL(Pñ|ñ) =
∑

Ñ
(i)
j ∈ñ

logP
Ñ

(i)
j

As the sum of all the probabilities in a distribution equals to
1, we have: ∑

Ñ
(i)
j ∈ñ

P
Ñ

(i)
j
≤ 1

The constrained optimization problem can be solved using
Lagrange multipliers. We construct:

L(Pñ;λ) =
∑

Ñ
(i)
j ∈ñ

logP
Ñ

(i)
j

+ λ
∑
ñ∈ñ

P
Ñ

(i)
j
≤ 1

By solving:
∂L(Pñ;λ)

∂P
Ñ

(i)
j

= 0 ∀P
Ñ

(i)
j
∈ Pñ

∂L(Pñ;λ)

∂λ
= 0

,

we have:

P
Ñ

(i)
j

=
1

|Pñ|
=

1

mq
∀P

Ñ
(i)
j
∈ Pñ

As
∑

P
Ñ

(i)
j

∈Pñ
= 1, we have the close-form probability

distribution of the maximum likelihood estimation as:

P (n∗ = Ñ
(i)
j ) = P

Ñ
(i)
j

=
1

mq
∀Ñ (i)

j ∈ ñ

C. Proof of Lemma 3
Proof.

EN∗

EX

 m∑
j=1

(N∗
j − Ñ(X)j)

2


=EN∗

EX

 m∑
j=1

((N∗
j )

2 + Ñ(X)2j )− 2

m∑
j=1

(N∗
j · Ñ(X)j)


=EN∗

EX

 m∑
j=1

((N∗
vj )

2 + Ñ(X)2uj
)− 2

m∑
j=1

(N∗
j · Ñ(X)j)


≥EN∗

EX

 m∑
j=1

((N∗
vj )

2 + Ñ(X)2uj
)− 2

m∑
j=1

(N∗
vj ·Ñ(X)uj

)


(12)

=EN∗

EX

 m∑
j=1

(N∗
vj − Ñ(X)uj

)2

 .

Eq. 12 applied the rearrangement inequality [15].

D. Proof of Proposition 1
Proof. The relaxations that go tighter when F(X) is close
to Y are enumerated and proved here:

• Our estimation is based on the right hand side of
Ineq. (6):

σn ≤
Lex +

√
L2
ex +m(Lin − EX,Y [||F(X)− Y ||2])

m

During training, we minimize loss L(F , X) = Lin +
2σlossLex, so that the terms Lex and Lin are getting
smaller and makes the bound tighter. The remaining
thing is to show that the estimation through Eq. (7-
10) for the lower bound of EX,Y

[
||F(X)− Y ||2

]
is

getting tighter as well.

• In Eq. (9), MLE N ∗ replaces the true noise distribu-
tion N as an estimation. When F(X) is closer to Y ,



the removed noise X−F(X) is closer to N = X−Y .
As N is sampled from N , N ∗ based on X − F(X)
is closer to the distribution of N ∗.

• In Ineq. (12), the conditions for its equality is that
larger removed noise maps to larger real noise. In other
words, the jth largest pixel of X−F(X) has the same
index as the jth largest pixel of X − Y , which tends
to hold more strictly when F(X) is closer to Y . For-
mally, assuming that the pixels with index i and j in
removed noise X − F (X) (denoted as rfi and rfj)
and those in real noise X − Y (denoted as ryi and
ryj) are disordered (i.e., (rfi − rfj)(ryi − ryj) < 0),
then by exchanging them (rf∗

i = rfj , rf
∗
j = rfi)

to get an output F ∗(X) with ordered pair, we have
||Y − F ∗(X)||2 < ||Y − F (X)||2. To prove it, we
show ||Y − F ∗(X)||2 − ||Y − F (X)||2 < 0 as fol-
lows:

||Y − F
∗
(X)||2 − ||Y − F (X)||2

=||(X − F
∗
(X)) − (X − Y )||2 − ||(X − F (X)) − (X − Y )||2

=
∑
k

(rf
∗
k − ryk)

2 −
∑
k

(rfk − ryk)
2

=
∑

k ̸=i,j

((rf
∗
k − ryk)

2 − (rfk − ryk)
2
)

+ (rf
∗
i − ryi)

2
+ (rf

∗
j − ryj)

2 − (rfi − ryi)
2 − (rfj − ryj)

2

=(rf
∗
i − ryi)

2
+ (rf

∗
j − ryj)

2 − (rfi − ryi)
2 − (rfj − ryj)

2

=(rfj − ryi)
2
+ (rfi − ryj)

2 − (rfi − ryi)
2 − (rfj − ryj)

2

=(rfj − ryi)
2 − (rfi − ryi)

2
+ (rfi − ryj)

2 − (rfj − ryj)
2

=(rfj − rfi)(rfj + rfi − 2ryi) + (rfi − rfj)(rfi + rfj − 2ryj)

=(rfj − rfi)(rfj + rfi − 2ryi − rfi − rfj + 2ryj)

=(rfj − rfi)(−2ryi + 2ryj)

<0

Table 6: The performance on the real world datasets SIDD
and PolyU. We compare our Noise2Info with Noisy im-
age without clean, supervised method Noise2True, self-
supervised method with noise information Noise2Same
(σloss = σn), and pure self-supervised methods
Noise2Void, Noise2Self, Noise2Same (σloss = 1). The
best score is in bold font and the second-best scores are
underlined.

Model Data set
SIDD PolyU

Noisy image 15.45 35.62
Noise2True 23.82 36.43

Noise2Same (σloss = σn) 16.26 36.09
ConvBS 13.73 30.32

Noise2Void 15.69 35.54
Noise2Self 15.94 34.23

Noise2Same (σloss = 1) 19.99 36.72
Noise2Info 16.07 35.76

Table 7: The information of groundtruth σn and σloss de-
rived by Noise2Info on SIDD and PolyU data sets.

Data set Training Set Test Set N2I
µn σn µn σn σloss

SIDD -0.006 0.057 -0.011 0.074 0.022
PolyU 0 0.097 -0.005 0.177 0.026

Table 8: The statistics of dataset Planaria. We show the
standard deviation and min-max values of 1) noisy images
X from the training dataset; 2) noisy images X from three
groups of testing dataset; and 3) clean images Y from the
testing dataset.

Train Test
X X (C1) X (C2) X (C3) Y

σ 0.1858 59.62 46.22 36.58 1532
min value -0.5888 253 293 295 265
max value 87.94 36824 1632 1277 51061

E. Analysis on Real-world Datasets

E.1. SIDD Dataset & PolyU Dataset

In this subsection, we display experimental results on
two real-world datasets SIDD [2] and PolyU [30].

SIDD dataset [2] includes images captured by five smart-
phone cameras in 10 static scenes. The training dataset
contains 320 image pairs where 1280 image pairs are for
testing. The results are given in Table. 6. Note that we
normalize both input and output so that the PSNR score is
relatively smaller compared with published scores [2].

PolyU dataset [30] contains 40 large raw images and
crops 100 regions of 512 × 512 from them. The authors
capture each scene many times and treat the mean of these
images as the “ground truth” image. We use the first 50
cropped regions for training and the latter 50 for testing.
The results are shown in Table. 6.

It is surprising that our method is slightly inferior to
the ideal case of Noise2Same models (σloss = σn) but
largely falls behind Noise2Same with σn = 1. We col-
lect the statistics of SIDD dataset and PolyU dataset in
Table. 7 and found that their standard deviations of testing
datasets are inconsistant with those of training datasets. Be-
sides, SIDD has noise of µ = −0.011 while σn = 0.074,
where its mean is not neglectable compared with its std.
We argue that these facts breaks the assumptions of listed
self-denoising methods inluding Noise2Info, where larger
σloss leads to a better result. It is interesting that on
SIDD, self-supervised methods have large gaps compared
to supervised method (PSNR≤19.99 against 23.82), while
on PolyU, Noise2Same even outperforms the supervised
method (PSNR=36.72 against 36.43), which implies pos-
sible merits for future works. In addition, SIDD and PolyU
have smaller σn on their training set (0.057 and 0.097) than
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Figure 5: Result demonstration without cherry-picking. We display outputs of methods including N2I, two versions of
Noise2Same, Noise2Self, Noise2Void, Noise2Noise, and Noise2True with their PSNRs of 3 figures from 3 datasets.

Table 9: The performance on the Hànzı̀ dataset with different types of noise. We compare our Noise2Info with Noise2Same
trained under σloss = 1 and the intractable ideal case σloss = σn. All the noises are of std 0.3, including Gaussian noise,
Logistic Noise, Uniform noise, and the mixture of these 3 noises. The best scores are in bold font and the second-best scores
are underlined.

Model
Types of injected noises (σn =0.5845)

Gaussian noise Logistic noise Uniform noise Mixed noise
PSNR σloss PSNR σloss PSNR σloss PSNR σloss

Noise2Void 23.60 - 23.15 - 23.32 - 23.13 -
Noise2Self 23.45 - 23.67 - 11.79 - 23.45 -

Noise2Same (σloss = σn) 23.81 0.5845 23.17 0.5845 24.20 0.5845 23.44 0.5845
Noise2Same (σloss = 1) 23.55 1.0 23.42 1.0 23.64 1.0 23.50 1.0

Noise2Info 23.73 0.6006 23.44 0.5986 23.88 0.6006 23.76 0.6008

those on their testing set (0.074 and 0.177), which leads to a
smaller estimation of N2I and a weaker result compared to
Noise2Same. However, Noise2Info still outperforms other
self-supervised methods.

E.2. Planaria Dataset

Planaria [28] is a dataset with physically acquired 3D flu-
orescence microscopy data. For training, 17005 3D patches
of noisy images at three noise levels are collected under
conditions C1, C2, and C3. Twenty images at each of the
three noise levels are used for testing. However, when we
investigate the statistics of the Planaria dataset, we found
that its σn is not consistent in training and testing datasets
with pretty different scales.

In Tab. 8, we collect the standard deviation and min-
max values of each groups of clean and noisy images. The
scale of them varies a lot. We follow the previous setting

[29] to normalize each group including the clean image for
training and evaluation, where on the other datasets, output
F(X) is denormalized and compared with the original Y .
In this setting, we found that the standard deviations σn of
noises under the three conditions are 0.98, 1.13, 1.32, where
the extracted σloss on training dataset using Noise2Info is
0.1612. Noise2Same [29] uses σloss = 1, which fits to
the testing datasets. However, as the assumptions that σn

should be consistent in training and testing datasets is not
held, Noise2Info is not a suitable choice for Planaria.

F. More Experimental Results

F.1. Visual Cases on Three Datasets

Fig. 5 shows the output samples of the compared meth-
ods. Noise2Same with known σn and our Noise2Info out-
perform other self-supervised methods and are comparable



with the two supervised methods. With supervision, su-
pervised methods are capable to learn structured features
such as the strokes of Hànzı̀, which is a weak point for
self-supervised methods as well-defined smooth strokes are
never seen. In contrast, the gap between our method and
supervised methods are smaller for the other two real world
datasets.

F.2. Insight: Different Noise Models

We further investigate the influence of different noise
models with zero-mean. Gaussian noise, logistic noise, uni-
form noise, and the mixture of the three are added to the
clean Hànzı̀ [3]. All the images have added noise of std
σ′
n = 0.3.

We show the results in Tab. 9. For all the noises,
Noise2Info bounds σn tightly and gets stable results.
Datasets with Gaussian and Uniform noise follow our the-
ory, where Noise2Same with ideal σloss performs best
and Noise2Info is the second-best. For the Logistic and
Mixed noises, our Noise2Info even performs better than
Noise2Same. Noise2Self performs unstably with the best
score for Logistic noise but collapes on Uniform noise.


